如圖,

(I)求證

(II)設

 

【答案】

見解析

【解析】(I),

,

(II)

,

第一問主要是根據(jù)線面垂直得到線線垂直,然后再利用線線垂直得到線面垂直。第二問首先是利用已知條件得到一個平面,然后去證明面面平行,進而得到線面平行。

【考點定位】線面垂直的判定定理和性質(zhì)定理,面面平行的判定定理和性質(zhì)定理。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在三棱柱ABC-A1B1C1中,AB=AC=AA1=2,平面ABC1⊥平面AA1C1C,∠AA1C1=∠BAC1=60°,設AC1與AC相交于點O,如圖.
(I)求證:BO⊥平面AA1C1C;
(Ⅱ)求二面角B1-AC1-A1的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)在邊長為3的正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,滿足,將沿EF折起到的位置,使二面角成直二面角,連結,(如圖)(I)求證:  (Ⅱ)求點B到面的距離(Ⅲ)求異面直線BP與所成角的余弦

查看答案和解析>>

科目:高中數(shù)學 來源:2013年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(遼寧卷解析版) 題型:解答題

如圖,

(I)求證

(II)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河北省高三押題數(shù)學(理)試題 題型:解答題

(本小題滿分12分)已知矩形ABCD中,,,現(xiàn)沿對角線折成二面角,使(如圖).

(I)求證:

(II)求二面角平面角的大小.

 

查看答案和解析>>

同步練習冊答案