A. | -4 | B. | 0 | C. | 4 | D. | -4或0 |
分析 題意等價于“已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x≥0}\\{{x}^{2}-ax,x<0}\end{array}\right.$的最小值是a,求a的值.”分類討論,利用函數(shù)的圖象,即可得出結(jié)論.
解答 解:題意等價于“已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x≥0}\\{{x}^{2}-ax,x<0}\end{array}\right.$的最小值是a,求a的值.”
當a≥0時,如圖11(1),f(x)無最小值;
當a<0時,如圖11(2),f(x)最小值是f($\frac{a}{2}$)=-$\frac{{a}^{2}}{4}$,
∴-$\frac{{a}^{2}}{4}$=a,
∴a=0(舍)或a=-4.
故選A.
點評 本題考查程序框圖,考查數(shù)形結(jié)合的數(shù)學思想,正確運用函數(shù)的圖象是關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,3} | B. | {3,27,81} | C. | {1,3,9} | D. | {9,27} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | b<a<c | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com