精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,AC=
2
,BC=1,如果以C為圓心,以CB長(zhǎng)為半徑的圓交AB于點(diǎn)P,那么AP的長(zhǎng)為(  )
A、
3
B、
3
3
C、
2
3
3
D、3
分析:如圖,延長(zhǎng)AC交⊙C與E,設(shè)與圓的另一個(gè)交點(diǎn)為Q,首先在Rt△ABC中,∠C=90°,AC=
2
,BC=1,利用勾股定理即可求出AB的長(zhǎng)度,根據(jù)題意可以知道CQ=CB=CE=1,然后根據(jù)相交弦定理即可求出AP的長(zhǎng)度.
解答:精英家教網(wǎng)解:如圖,延長(zhǎng)AC交⊙C與E,設(shè)與圓的另一個(gè)交點(diǎn)為Q,
在Rt△ABC中,∠C=90°,∵AC=
2
,BC=1,
∴AB=
AC2+BC2
=
3
,
∵CQ、CB、CE都是圓的半徑,
∴CQ=CB=CE=1,
根據(jù)相交弦定理得AQ•AE=AP•AB,
∴AP=
AQ•AE
AB
=
(
2
-1)(
2
+1)
3
=
3
3

故選B.
點(diǎn)評(píng):此題首先利用了勾股定理,也考查的了相交弦定理:圓內(nèi)兩弦相交于圓內(nèi)一點(diǎn),各弦被這點(diǎn)所分得的兩線段的長(zhǎng)的乘積相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點(diǎn),∠DAC=30°,BD=2,AB=2
3
,則AC的長(zhǎng)為(  )
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點(diǎn)P.
(1)若AE=CD,點(diǎn)M為BC的中點(diǎn),求證:直線MP∥平面EAB
(2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O點(diǎn),OA=OB,DO=2,曲線E過C點(diǎn),動(dòng)點(diǎn)P在E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)過D點(diǎn)的直線L與曲線E相交于不同的兩點(diǎn)M、N且M在D、N之間,設(shè)
DM
DN
=λ,試確定實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點(diǎn),將△BCD沿直線CD翻折,若在翻折過程中存在某個(gè)位置,使得CB⊥AD,則x的取值范圍是( 。
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案