設(shè)函數(shù),是定義域為的奇函數(shù).
(Ⅰ)求的值,判斷并證明當(dāng)時,函數(shù)上的單調(diào)性;
(Ⅱ)已知,函數(shù),求的值域;
(Ⅲ)已知,若對于時恒成立.請求出最大的整數(shù)

(Ⅰ)在R上為增函數(shù);(Ⅱ);(Ⅲ)的最大整數(shù)為10.

解析試題分析:(Ⅰ)由奇函數(shù)的性質(zhì),由單調(diào)性的定義證明 在R上是增函數(shù);
(Ⅱ)由可得,由換元法令,將函數(shù)轉(zhuǎn)化為二次函數(shù)求最值;(Ⅲ)時,原式可化為,令,由分離參數(shù)的方法得到,進(jìn)而得到的取值范圍.本題中用到換元法,換元之后應(yīng)特別注意變元的取值范圍.
試題解析:(Ⅰ)是定義域為R上的奇函數(shù),,得
,,即是R上的奇函數(shù) 2分
設(shè),則,
,,在R上為增函數(shù) 5分
(Ⅱ),即(舍去)
,令
由(1)可知該函數(shù)在區(qū)間上為增函數(shù),則
           8分
當(dāng)時,;當(dāng)時,
所以的值域為            10分
(Ⅲ)由題意,即,在時恒成立
,則
恒成立
即為恒成立          13分
,恒成立,當(dāng)時,
,則的最大整數(shù)為10           16分
考點:函數(shù)的奇偶性,單調(diào)性,換元法求函數(shù)的最值,用分離參數(shù)的方法求參數(shù)的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象過點(2,0).
⑴求m的值;
⑵證明的奇偶性;
⑶判斷上的單調(diào)性,并給予證明;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù),記
(Ⅰ)求函數(shù)的定義域及其零點;
(Ⅱ)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

湖南省環(huán)保研究所對長沙市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時刻x的關(guān)系為,其中a是與氣象有關(guān)的參數(shù),且,若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作.
(Ⅰ)令,求t的取值范圍;
(Ⅱ)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的偶函數(shù),當(dāng)時,。
(1)求的函數(shù)解析式,并用分段函數(shù)的形式給出;
(2)作出函數(shù)的簡圖;
(3)寫出函數(shù)的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的最小值為,且關(guān)于的一元二次不等式的解集為。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)其中,求函數(shù)時的最大值;
(Ⅲ)若為實數(shù)),對任意,總存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)是定義域為的奇函數(shù).
(1)求的值;
(2)若,且上的最小值為,求的值.
(3)若,試討論函數(shù)上零點的個數(shù)情況。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象分別與軸、軸交于兩點,且,函數(shù),當(dāng)滿足不等式,時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(2)問:是否存在常數(shù),當(dāng)時,的值域為區(qū)間,且的長度為.

查看答案和解析>>

同步練習(xí)冊答案