已知a、b、c是△ABC中∠A、∠B、∠C的對(duì)邊,,b=6,
(1)求c;
(2)求的值.
【答案】分析:(1)由a,b及cosA的值,利用余弦定理列出關(guān)于c的方程,求出方程的解即可得到c的值;
(2)由cosA的值小于0,得到A為鈍角,即sinA大于0,利用同角三角函數(shù)間的基本關(guān)系求出sinA的值,再由sinA,a及b的值,利用正弦定理求出sinB的值,由B為銳角,利用同角三角函數(shù)間的基本關(guān)系求出cosB的值,進(jìn)而利用二倍角的正弦、余弦函數(shù)公式求出sin2B與cos2B的值,所求式子利用兩角和與差的余弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn)后,將各自的值代入計(jì)算即可求出值.
解答:解:(1)在△ABC中,由余弦定理得,a2=b2+c2-2bccosA,
即48=36+c2-2×c×6×(-),
整理得:c2+4c-12=0,即(c+6)(c-2)=0,
解得:c=2或c=-6(舍去),
則c=2;
(2)由cosA=-<0,得A為鈍角,
∴sinA==,
在△ABC中,由正弦定理,得=,
則sinB===
∵B為銳角,∴cosB==,
∴cos2B=1-2sin2B=-,sin2B=2sinBcosB=,
則cos(2B-)=(cos2B+sin2B)=×(-+)=
點(diǎn)評(píng):此題考查了同角三角函數(shù)間的基本關(guān)系,正弦、余弦定理,二倍角的正弦、余弦函數(shù)公式,兩角和與差的余弦函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3、已知a,b,c是三條不同的直線,α,β,γ是三個(gè)不同的平面,下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C是直線l上的三點(diǎn),向量
OA
、
OB
、
OC
滿足
OA
-(y+1-lnx)
OB
+
1-x
ax
OC
=
o
,(O不在直線l上a>0)
(1)求y=f(x)的表達(dá)式;
(2)若函數(shù)f(x)在[1,∞]上為增函數(shù),求a的范圍;
(3)當(dāng)a=1時(shí),求證lnn>
1
2
+
1
3
+
1
4
+…+
1
n
,對(duì)n≥2的正整數(shù)n成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c是直角三角形的三邊,其中c為斜邊,若實(shí)數(shù)M使不等式
1
a
+
1
b
+
1
c
M
a+b+c
恒成立,則實(shí)數(shù)M的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知A、B、C是銳角△ABC的三個(gè)內(nèi)角,內(nèi)量p=(1+sinA,1+cosA),q=(1+sinB,-1-cosB),則p與q的夾角是


  1. A.
    銳角
  2. B.
    鈍角
  3. C.
    直角
  4. D.
    不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0119 期末題 題型:單選題

已知a、b、c是直線,α、β是平面,給出下列五種說(shuō)法:
①若a⊥b,b⊥c,則a∥c;   ②若a∥b,b⊥c,則a⊥c;
③若a∥β,bβ,則a∥b; ④若a與b異面,且a∥β,則b與β相交;
⑤若a∥c,α∥β,a⊥α,則c⊥β。
其中正確說(shuō)法的個(gè)數(shù)是

[     ]

A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案