如圖,三棱柱中,側(cè)面底面,,且,O為中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值
(Ⅰ)證明略(Ⅱ).
【解析】Ⅰ)先證明,根據(jù)平面平面,證得平面;(Ⅱ)向量法求解。
解:(Ⅰ)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061920591692268642/SYS201206192100311570183262_DA.files/image006.png">,且O為AC的中點(diǎn),所以. ………1分
又由題意可知,平面平面,交線為,且平面,所以平面. ………4分
(Ⅱ)如圖,以O為原點(diǎn),所在直線分別為x,y,z軸建立空間直角坐標(biāo)系.
由題意可知,又
所以得:
則有: ………6分
設(shè)平面的一個(gè)法向量為,則有
,令,得
所以. ………………7分
. ………………9分
因?yàn)橹本與平面所成角和向量與所成銳角互余,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆浙江省高二9月質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,三棱柱中,側(cè)面底面,,且,O為中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三3月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題共12分)如圖,三棱柱中,側(cè)面底面,
,且,O為中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在上是否存在一點(diǎn),使得平面,若不存在,說明理由;若存在,確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆遼寧省高二期末教學(xué)質(zhì)量測試?yán)砜茢?shù)學(xué) 題型:解答題
如圖,三棱柱中,側(cè)面底面,,且,O為中點(diǎn).
(1)證明:平面;
(2)求直線與平面所成角的正弦值;
(3)在上是否存在一點(diǎn),使得平面,
若不存在,說明理由;若存在,確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省成都外國語學(xué)校2011-2012學(xué)年高三2月月考(數(shù)學(xué)理) 題型:解答題
如圖,三棱柱中,側(cè)面底面,,
且,O為中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在上是否存在一點(diǎn),使得平面,若不存在,說明理由;若存在,確定點(diǎn)的位置.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com