設(shè)q(x)∶x2=x,試用不同的表達(dá)方法寫出特稱命題“x∈R,q(x)”.

思路分析:根據(jù)特稱命題的定義,而特稱量詞不只一個.

解:(1)存在實數(shù)x,使x2=x成立.

(2)至少有一個實數(shù)x,使x2=x成立.

(3)對有些實數(shù)x,使x2=x成立.

(4)有一個實數(shù)x,使x2=x成立.

(5)對每個實數(shù)x,使x2=x成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)設(shè)函數(shù)f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函數(shù)y=g(x)圖象恒過定點P,且點P在y=f(x)的圖象上,求m的值;
(Ⅱ)當(dāng)a=8時,設(shè)F(x)=f′(x)+g(x),討論F(x)的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè)G(x)=
f(x),x≤1
g(x),x>1
,曲線y=G(x)上是否存在兩點P、Q,使△OPQ(O為原點)是以O(shè)為直角頂點的直角三角形,且該三角形斜邊的中點在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
2a2
x2
(a>0)
(Ⅰ)若設(shè)F(x)=f(x)+g(x),求F(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)H(x)=f(x)+
2g(x)
圖象上任意點處的切線的斜率k≤1恒成立,求實數(shù)a的最小值;
(Ⅲ)是否存在實數(shù)m,使得函數(shù)p(x)=
1
3
x3+x2+m-
2
3
的圖象與q(x)=
3
2
f(x2)
的圖象恰好有三個不同的交點?若存在,求出m的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:濰坊一模 題型:解答題

設(shè)函數(shù)f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函數(shù)y=g(x)圖象恒過定點P,且點P在y=f(x)的圖象上,求m的值;
(Ⅱ)當(dāng)a=8時,設(shè)F(x)=f′(x)+g(x),討論F(x)的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè)G(x)=
f(x),x≤1
g(x),x>1
,曲線y=G(x)上是否存在兩點P、Q,使△OPQ(O為原點)是以O(shè)為直角頂點的直角三角形,且該三角形斜邊的中點在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海高考真題 題型:解答題

設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點,l是經(jīng)過原點與點(1,b)的直線,記Q是直線l與拋物線x2=2py(p≠0)的異于原點的交點,
(1)若a=1,b=2,p=2,求點Q的坐標(biāo);
(2)若點P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點Q落在雙曲線4x2-4y2=1上;
(3)若動點P(a,b)滿足ab≠0,p=,若點Q始終落在一條關(guān)于x軸對稱的拋物線上,試問動點P的軌跡落在哪種二次曲線上,并說明理由。

查看答案和解析>>

同步練習(xí)冊答案