【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點(diǎn).
(I)若a∈R且a≠0,求函數(shù)f(x)=ax2+x﹣a的“局部對稱點(diǎn)”;
(II)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對稱點(diǎn),求實(shí)數(shù)m的取值范圍.
【答案】解:(Ⅰ)由f(x)=ax2+x﹣a,得f(﹣x)=ax2﹣x﹣a,代入f(﹣x)=﹣f(x),得ax2+x﹣a+ax2﹣x﹣a=0,即ax2﹣a=0(a≠0),
∴x=±1,
∴函數(shù)f(x)=ax2+x﹣a的局部對稱點(diǎn)是±1;
(Ⅱ)∵f(﹣x)=4﹣x﹣m2﹣x+1+m2﹣3,由f(﹣x)=﹣f(x),
得4﹣x﹣m2﹣x+1+m2﹣3=﹣(4x﹣m2x+1+m2﹣3),
于是4x+4﹣x﹣2m(2x+2﹣x)+2(m2﹣3)=0①在R上有解,
令t=2x+2﹣x , (t≥2),則4x+4﹣x=t2﹣2,
∴方程①變?yōu)閠2﹣2mt+2m2﹣8=0在區(qū)間[2,+∞)內(nèi)有解,
令g(t)=t2﹣2mt+2m2﹣8,由題意需滿足以下條件:
g(2)≤0或 ,
解得 或 ,
綜上
【解析】(Ⅰ)直接由奇函數(shù)的定義列式求得x值得答案;(Ⅱ)由f(﹣x)=﹣f(x),可得4x+4﹣x﹣2m(2x+2﹣x)+2(m2﹣3)=0在R上有解,令t=2x+2﹣x , (t≥2),則4x+4﹣x=t2﹣2,轉(zhuǎn)化為在區(qū)間[2,+∞)內(nèi)有解,令g(t)=t2﹣2mt+2m2﹣8,由題意需滿足以下條件:g(2)≤0或 ,求解得答案.
【考點(diǎn)精析】利用函數(shù)的定義域及其求法對題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(﹣x)=f(2+x),f(2)=1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2lnx+ . (Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果對所有的x≥1,都有f(x)≤ax,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校開展“讀好書,好讀書”活動(dòng),要求本學(xué)期每人至少讀一本課外書,該校高一共有100名學(xué)生,他們本學(xué)期讀課外書的本數(shù)統(tǒng)計(jì)如圖所示. (Ⅰ)求高一學(xué)生讀課外書的人均本數(shù);
(Ⅱ)從高一學(xué)生中任意選兩名學(xué)生,求他們讀課外書的本數(shù)恰好相等的概率;
(Ⅲ)從高一學(xué)生中任選兩名學(xué)生,用ζ表示這兩人讀課外書的本數(shù)之差的絕對值,求隨機(jī)變量ζ的分布列及數(shù)學(xué)期望E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(a1 , a2), =(b1 , b2),定義一種向量運(yùn)算 =(a1b1 , a2b2),已知向量 =(2, ), =( ,0),點(diǎn)P(x′,y′)在y=sinx的圖象上運(yùn)動(dòng).點(diǎn)Q(x,y)是函數(shù)y=f(x)圖象上的動(dòng)點(diǎn),且滿足 +n(其中O為坐標(biāo)原點(diǎn)),則函數(shù)y=f(x)的值域是( )
A.[﹣ , ]
B.
C.[﹣1,1]
D.(﹣1,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x+1)定義域是[﹣2,3],則y=f(2x﹣1)的定義域( )
A.
B.[﹣1,4]
C.[﹣5,5]
D.[﹣3,7]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在淘寶網(wǎng)上,某店鋪專賣孝感某種特產(chǎn).由以往的經(jīng)驗(yàn)表明,不考慮其他因素,該特產(chǎn)每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克,1<x≤5)滿足:當(dāng)1<x≤3時(shí),y=a(x﹣3)2+ ,(a,b為常數(shù));當(dāng)3<x≤5時(shí),y=﹣70x+490.已知當(dāng)銷售價(jià)格為2元/千克時(shí),每日可售出該特產(chǎn)600千克;當(dāng)銷售價(jià)格為3元/千克時(shí),每日可售出150千克.
(1)求a,b的值,并確定y關(guān)于x的函數(shù)解析式;
(2)若該特產(chǎn)的銷售成本為1元/千克,試確定銷售價(jià)格x的值,使店鋪每日銷售該特產(chǎn)所獲利潤f(x)最大(x精確到0.1元/千克).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,三邊a,b,c所對應(yīng)的角分別是A,B,C,已知a,b,c成等比數(shù)列.
(1)若 + = ,求角B的值;
(2)若△ABC外接圓的面積為4π,求△ABC面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x2+ax+a)(a∈R) (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=﹣1,判斷f(x)是否存在最小值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com