已知Sn=+++…+(n∈N*)的值是,則n=   
【答案】分析:利用裂項(xiàng)求和先求出Sn,然后根據(jù)已知條件可求n的值即可
解答:解:∵Sn=+++…+
=
=

∴n=2008
故答案為:2008
點(diǎn)評(píng):本題主要考查了利用裂 項(xiàng)求解數(shù)列的和,解題的關(guān)鍵是對(duì)數(shù)列的通項(xiàng)進(jìn)行裂項(xiàng),屬于基本方法的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是等差數(shù)列{an}(n∈N*)的前n項(xiàng)和,且S6>S7>S5,有下列四個(gè)命題:①d<0;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項(xiàng)為S11,其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn,Tn分別為等差數(shù)列{an}、{bn}的前n項(xiàng)和,且
Sn
Tn
=
2n+1
n+3
,則
a7
b7
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇一模)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知Sn+1=pSn+q(p,q為常數(shù),n∈N*),如果:a1=2,a2=1,a3=q-3p.
(1)求p,q的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)是否存在正整數(shù)m,n,使
Sn-m
Sn+1-m
2m
2m+1
成立?若存在,求出所有符合條件的有序?qū)崝?shù)對(duì)(m,n);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•順義區(qū)二模)已知Sn為等差數(shù)列{an}的前n項(xiàng)和,且S5=30,a1+a6=14.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{2an}的前n項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶一模)已知Sn是數(shù)列{an}的前n項(xiàng)和,且a1=1,nan+1=2Sn(n∈N*)
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項(xiàng)an;
(3)設(shè)數(shù)列{bn}滿(mǎn)足b1=
1
2
bn+1=
1
ak
b
2
n
+bn
,求證:當(dāng)n≤k時(shí)有bn<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案