設(shè)橢圓的左、右焦點(diǎn)分別為、,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且

 (Ⅰ)求橢圓的離心率;

(Ⅱ)若過(guò)、、三點(diǎn)的圓恰好與直線相切,求橢圓的方程;                       

(Ⅲ)在(Ⅱ)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓交于、兩點(diǎn),

若點(diǎn)使得以為鄰邊的平行四邊形是菱形,求的取值范圍.      

 

【答案】

解:(Ⅰ)由題意知,,

    ∵的中點(diǎn),

中,

,又

故橢圓的離心率    ……………………………………………3分

    (Ⅱ)由(Ⅰ)知,于是, ,

    的外接圓圓心為(,0),半徑=,

所以,解得=2,∴, 

所求橢圓方程為      ………………………………………6分

(Ⅲ)由(Ⅱ)知,設(shè),

    由           代入得

    則,  ………………………8分

   

    由于菱形對(duì)角線垂直,則

    故

         ……………………………10分

    由已知條件知

  

  故的取值范圍是.……12分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•藍(lán)山縣模擬)設(shè)橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且2
F1F2
+
F2Q
=
0
.則橢圓C的離心率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江高三上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過(guò)點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且

(1)求橢圓的離心率; (2)若過(guò)、三點(diǎn)的圓恰好與直線相切,

求橢圓的方程;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市朝陽(yáng)區(qū)高三上學(xué)期期末理科數(shù)學(xué)卷 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過(guò)點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且,若過(guò),,三點(diǎn)的圓恰好與直線相切. 過(guò)定點(diǎn)的直線與橢圓交于兩點(diǎn)(點(diǎn)在點(diǎn),之間).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線的斜率,在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形. 如果存在,求出的取值范圍,如果不存在,請(qǐng)說(shuō)明理由;

(Ⅲ)若實(shí)數(shù)滿足,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆山西省第一學(xué)期高三12月月考文科數(shù)學(xué)試卷 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別是,下頂點(diǎn)為,線段的中點(diǎn)為為坐標(biāo)原點(diǎn)),如圖.若拋物線軸的交點(diǎn)為,且經(jīng)過(guò)點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線的切線交橢圓兩點(diǎn),求面積的最大值.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案