給出下列二個命題:①若四≥b>-1,則
1+四
b
1+b
;②若正整數(shù)m和n滿足m≤n,則
m(n-m)
n
2
;③設(shè)下(v1,y1)為圓O1:v2+y2=9上任一點,圓O2以Q(四,b)為圓心且半徑為1.當(dāng)(四-v12+(b-y12=1時,圓O1與圓O2相切.其中假命題的個數(shù)為( 。
A.0B.1C.2D.3
①a≥b>-1時,由于a(1+b)-b(1+a)=a-b≥0,故
a
1+a
b
1+b
成立,①為真命題,
②由基本不等式可知為真命題,
③中(a-x12+(b-y12=1表示P(x1,y1)Q(a,b)兩點間的距離為1,上
又圓O2以Q(a,b)為圓心且半徑為1,所以P點在圓O2上,.
所以圓O1與圓O2有公共點,但不一定相切.故③是假命題
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉安二模)已知直線l,m,平面α,β,且l⊥α,m?β,給出下列四個命題:
①若α∥β,則l⊥m;
②若l⊥m,則α∥β;
③若α⊥β,則l∥m;
④若l∥m,則α⊥β
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-mx+m(x∈R)同時滿足:(1)不等式f(x)≤0的解集有且只有一個元素;(2)在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項和Sn=f(n),bn=1-
8-man
,我們把所有滿足bi•bi+1<0的正整數(shù)i的個數(shù)叫做數(shù)列{bn}的異號數(shù).根據(jù)以上信息,給出下列五個命題:
①m=0;
②m=4;
③數(shù)列{an}的通項公式為an=2n-5;
④數(shù)列{bn}的異號數(shù)為2;
⑤數(shù)列{bn}的異號數(shù)為3.
其中正確命題的序號為
②⑤
②⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)已知函數(shù)f(x)=|x2-2ax+a|(x∈R),給出下列四個命題:
①當(dāng)且僅當(dāng)a=0時,f(x)是偶函數(shù);
②函數(shù)f(x)一定存在零點;
③函數(shù)在區(qū)間(-∞,a]上單調(diào)遞減;
④當(dāng)0<a<1時,函數(shù)f(x)的最小值為a-a2
那么所有真命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•資中縣模擬)已知二次函數(shù)f(x)=x2-mx+m(x∈R)同時滿足:(1)不等式f(x)≤0的解集有且只有一個元素;(2)在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項和Sn=f(n),bn=1-
8-man
,我們把所有滿足bi•bi+1<0的正整數(shù)i的個數(shù)叫做數(shù)列{bn}的異號數(shù).根據(jù)以上信息,給出下列五個命題:
①m=0;
②m=4;
③數(shù)列{an}的通項公式為an=2n-5;
④數(shù)列{bn}的異號數(shù)為2;
⑤數(shù)列{bn}的異號數(shù)為3.
其中正確命題的序號為
②⑤
②⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

同步練習(xí)冊答案