已知雙曲線的離心率為,左、右焦點分別為、,一條準線的方程為
(1)求雙曲線的方程;
(2)若雙曲線上的一點滿足,求的值;
(3)若直線與雙曲線交于不同的兩點,且在以為圓心的圓上,求實數(shù)的取值范圍。
解:(1)由條件有    


.故雙曲線的方程為:.  
(2)設.
   
 ∴
  

.
又由余弦定理有:.
    
.  
.  
(3)由則由條件有:     ①
中點,則
為圓心的圓上.
.  
化簡得:      ②
將②代入①得:
解得.
又由    

綜上:.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為( 。
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
10
-
y2
6
=1
D、
x2
6
-
y2
10
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,F(xiàn)1、F2是左右焦點,P為雙曲線上一點,且∠F1PF2=60°,S△PF1F2=12
3
.該雙曲線的標準方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年云南省高三上學期第一次月考試題文科數(shù)學 題型:解答題

(本小題滿分12分)

已知雙曲線的離心率為2,焦點到漸近線的距離等于,過右焦點的直線

 

交雙曲線于、兩點,為左焦點,

(Ⅰ)求雙曲線的方程;

(Ⅱ)若的面積等于,求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆河北省高二上學期第二次月考理科數(shù)學試卷 題型:解答題

已知雙曲線的離心率為2,焦點到漸近線的距離為,點P的坐標為(0,-2),過P的直線l與雙曲線C交于不同兩點M、N.  

(1)求雙曲線C的方程;

(2)設(O為坐標原點),求t的取值范圍

 

查看答案和解析>>

同步練習冊答案