設(shè)函數(shù)在區(qū)間的導函數(shù)為在區(qū)間的導函數(shù)為若在區(qū)間恒成立,則稱函數(shù)在區(qū)間上為“凸函數(shù)”,已知,若對任意的實數(shù)m滿足時,函數(shù)在區(qū)間上為“凸函數(shù)”,則的最大值為(   )

A.4 B.3 C.2 D.1 

C

解析試題分析:當時,恒成立等價于當時,恒成立.當時,顯然成立.
時,,∵的最小值是-2,∴,從而解得;當時,,∵的最大值是2,∴,從而解得.綜上可得,從而的最大值為
考點:本小題主要考查函數(shù)的導數(shù)與不等式恒成立問題的解法,考查知識遷移與轉(zhuǎn)化能力.
點評:解決此類問題關(guān)鍵是要理解題目所給信息(新定義),另外恒成立問題一般要轉(zhuǎn)化為最值問題解決,必要時要進行分類討論.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:單選題

遂寧二中將于近期召開學生代表大會,規(guī)定各班每人推選一名代表,當各班人數(shù)除以的余數(shù)大于時再增選一名代表。那么,各班可推選代表人數(shù)與該班人數(shù)之間的函數(shù)關(guān)系用取整函數(shù)表示不大于的最大整數(shù))可以表示為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知函數(shù)和函數(shù)的圖象如圖所示:則函數(shù)的圖象可能是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

函數(shù)是(   )

A.偶函數(shù)B.既是奇函數(shù)又是偶函數(shù)
C.奇函數(shù)D.非奇非偶函數(shù)函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

函數(shù)的零點所在區(qū)間為(    )

A.(1,0) B.(0,1) C.(1,2) D.(2,3) 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知,則在下列區(qū)間中,有實數(shù)解的是(     ).

A.(-3,-2) B.(-1,0) C.(2,3) D.(4,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若函數(shù)滿足時,,函數(shù),則函數(shù)在區(qū)間內(nèi)的零點的個數(shù)為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知函數(shù)的圖象如圖所示(其中是函數(shù)的導函數(shù)).下面四個圖象中,的圖象大致是( 。


A.
B.
C.
D.
                     

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

定義函數(shù),其中,且對于中的任意一個都與集合中的對應(yīng),中的任意一個都與集合中的對應(yīng),則的值為(    )

A. B. C.中較小的數(shù) D.中較大的數(shù) 

查看答案和解析>>

同步練習冊答案