在數(shù)列{a
n}中,a
1=1,a
n=
(n≥2),求 a
n.
分析:由a
n=
=S
n-S
n-1整理可得
-=2,結(jié)合等差數(shù)列的通項公式可求
,進而可求a
n.
解答:解:∵a
1=1,a
n=
=S
n-S
n-1∴
2Sn2-2SnSn-1-Sn+Sn-1=2Sn2∴S
n-1-S
n=2S
nS
n-1∴
-=2∴數(shù)列{
}是以2為公差,以1為首項的等差數(shù)列
∴
=1+2(n-1)=2n-1
∴S
n=
∴a
n=
=
點評:本題主要考查了利用數(shù)列的遞推公式構(gòu)造等差數(shù)列求解數(shù)列的通項公式的應(yīng)用,解題的關(guān)鍵構(gòu)造法的 應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
在數(shù)列{a
n}中,
=1,
an=an-1+1(n≥2),則數(shù)列{a
n}的通項公式為a
n=
2-21-n
2-21-n
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在數(shù)列{a
n}中,a
1=,并且對任意n∈N
*,n≥2都有a
n•a
n-1=a
n-1-a
n成立,令b
n=
(n∈N
*).
(Ⅰ)求數(shù)列{b
n}的通項公式;
(Ⅱ)設(shè)數(shù)列{
}的前n項和為T
n,證明:
≤Tn<.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在數(shù)列{a
n}中,a=
,前n項和S
n=n
2a
n,求a
n+1.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在數(shù)列{a
n}中,a
1=a,前n項和S
n構(gòu)成公比為q的等比數(shù)列,________________.
(先在橫線上填上一個結(jié)論,然后再解答)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
在數(shù)列{a
n}中,a
,并且對任意n∈N
*,n≥2都有a
n•a
n-1=a
n-1-a
n成立,令b
n=
(n∈N
*).
(Ⅰ)求數(shù)列{b
n}的通項公式;
(Ⅱ)設(shè)數(shù)列{
}的前n項和為T
n,證明:
.
查看答案和解析>>