17.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{3}}}x,x>0\\{({\frac{1}{3}})^x},x≤0\end{array}\right.$,則f(f(5))等于( 。
A.${log_{\frac{1}{3}}}5$B.5C.-5D.${({\frac{1}{3}})^5}$

分析 先求出f(5)=$lo{g}_{\frac{1}{3}}5$,從而f(f(5))=f($lo{g}_{\frac{1}{3}}5$),由此能求出結(jié)果.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{3}}}x,x>0\\{({\frac{1}{3}})^x},x≤0\end{array}\right.$,
∴f(5)=$lo{g}_{\frac{1}{3}}5$,
f(f(5))=f($lo{g}_{\frac{1}{3}}5$)=$(\frac{1}{3})^{lo{g}_{\frac{1}{3}}5}$=5.
故選:B.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在矩形ABCD中,以DA所在直線為x軸,以DA中點O為坐標(biāo)原點,建立如圖所示的平面直角坐標(biāo)系.已知點B的坐標(biāo)為(3,2),E、F為AD的兩個三等分點,AC和BF交于點G,△BEG的外接圓為⊙H.
(1)求證:EG⊥BF;
(2)求⊙H的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若正四棱臺的上底邊長為2,下底邊長為8,高為4則它的表面積為( 。
A.50B.100C.248D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四個命題中的真命題為( 。
A.若sin A=sin B,則A=BB.若lgx2=0,則x=1
C.?x∈R,都有x2+1>0D.?x0∈Z,使1<4x0<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若|a-c|<h,|b-c|<h,則下列不等式一定成立的是( 。
A.|a-b|<2hB.|a-b|>2hC.|a-b|<hD.|a-b|>h

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{2x+1}{x+1}$
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論
(2)求該函數(shù)在區(qū)間[2,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.定義|b-a|為區(qū)間(a,b)(a,b∈R,a<b)的長度.則不等式$\frac{3x-4}{{{x^2}+2x}}>\frac{1}{4}$的所有解集區(qū)間的長度和為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.閱讀如圖的程序框圖,輸出的結(jié)果為65.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E是棱BC的中點,點F在棱CC1上,且CF=2FC1,P是側(cè)面四邊形BCC1B1內(nèi)一點(含邊界),若A1P∥平面AEF,則直線A1P與面BCC1B1所成角的正弦值的取值范圍是( 。
A.$[\frac{{2\sqrt{5}}}{5},\frac{{5\sqrt{29}}}{29}]$B.$[\frac{{3\sqrt{13}}}{13},\frac{{5\sqrt{29}}}{29}]$C.$[\frac{{3\sqrt{13}}}{13},\frac{{2\sqrt{2}}}{3}]$D.$[\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{2}}}{3}]$

查看答案和解析>>

同步練習(xí)冊答案