已知正項數(shù)列
(Ⅰ)求證:數(shù)列{an}是等差數(shù)列;
(Ⅱ)若Cn+1-Cn=an+1,且C1=1,求{Cn}的通項公式;
(Ⅲ)設(shè)
【答案】分析:(I)要證數(shù)列{an}是等差數(shù)列,只要證明an+1-an為常數(shù),由an>0 及已知遞推關(guān)系可證
(II)由(I)知求an=2n+1,從而可得Cn+1-Cn=2n+1,故可利用迭代法Cn=(Cn-Cn-1)+(Cn-1-Cn-2)+…+(C3-C2)+(C2-C1)+C1求解
(III)由=,結(jié)合數(shù)列的通項的特點,故考慮利用錯位相減求和即可
解答:(I)證明:由已知可得:(an+1+an)(an+1-an)-2(an+1+an)=0
∴(an+1+an)(an+1-an-2)=0
∵an>0
∴an+1+an>0
∴an+1-an=2
∴數(shù)列{an}是以1為首項,以2為公差的等差數(shù)列(4分)
(II)解:由(I)知an=1+2(n-1)=2n-1
∴Cn+1-Cn=2n+1
當n≥2時,Cn=(Cn-Cn-1)+(Cn-1-Cn-2)+…+(C3-C2)+(C2-C1)+C1
=(2n-1)+(2n-3)+…+5+3+1
=
當n=1時,適合上式
(8分)
(III)解:∵=
∴Tn=b1+b2+…+bn
∴Tn=
=
①-②可得,=
==
(12分)
點評:本題主要考查了等差數(shù)列的定義法在證明等差數(shù)列中的應(yīng)用,解題的關(guān)鍵是對已知遞推公式進行變形,迭代法在數(shù)列通項求解中的應(yīng)用及利用錯位相減求和方法的應(yīng)用,本題考查綜合數(shù)列的遞推關(guān)系、通項求解,數(shù)列求和等知識的綜合
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前n和為Sn,且
Sn
1
4
與(an+1)2的等比中項.
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若bn=
an
2n
,數(shù)列{bn}的前n項和為Tn,求Tn;
(3)在(2)的條件下,是否存在常數(shù)λ,使得數(shù)列{
Tn
an+2
}
為等比數(shù)列?若存在,試求出λ;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}滿足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),設(shè)bn=
1
an
,數(shù)列{bn}的前n項的和Sn,則Sn的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前n項和sn=
an2+an
2
,bn=(1+
1
2an
)an(n∈N*)

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)定理:若函數(shù)f(x)在區(qū)間D上是凹函數(shù),且f'(x)存在,則當x1>x2(x1,x2∈D)時,總有
f(x1)-f(x2)
x1-x2
<f′(x1)
,請根據(jù)上述定理,且已知函數(shù)y=xn+1(n∈N*)是(0,+∞)上的凹函數(shù),判斷bn與bn+1的大;
(Ⅲ)求證:
3
2
bn<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前項和為Sn,且滿足Sn+an=1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn=
1an
,則是否存在數(shù)列{bn},滿足b1c1+b2c2+…+bncn=(2n-1)2n+1+2對一切正整數(shù)n都成立?若存在,請求出數(shù)列{bn}的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前n項和為Sn,
Sn
1
4
(an+1)2的等比中項.
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若b1=a1,且bn=2bn-1+3,求數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案