設(shè)P(x,y)是平面區(qū)域D:
x-y+1≤0
x+y-2≤0
x≥0
上任意一點(diǎn),Q(
1
2
,3)
,則|PQ|的最小值為( 。
分析:先根據(jù)約束條件畫出區(qū)域圖,然后根據(jù)|PQ|的幾何意義就是平面區(qū)域內(nèi)一點(diǎn)P到Q的距離,結(jié)合圖形可得最小值為|CQ|,最后利用兩點(diǎn)的距離公式解之即可.
解答:解:根據(jù)約束條件
x-y+1≤0
x+y-2≤0
x≥0
畫出平面區(qū)域
|PQ|的幾何意義就是平面區(qū)域內(nèi)一點(diǎn)P到Q的距離
觀察圖形可當(dāng)點(diǎn)P在點(diǎn)C(0,2)處|PQ|取最小值
∴|PQ|的最小值為
5
2

故選D.
點(diǎn)評:本題考查的知識點(diǎn)是簡單線性規(guī)劃,其中根據(jù)約束條件畫出可行域,并分析目標(biāo)函數(shù)的幾何意義是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(x,y)是平面直角坐標(biāo)系中任意一點(diǎn),定義[OP]=|x|+|y|(其中O為坐標(biāo)原點(diǎn)).若點(diǎn)M是直線y=x+1上任意一點(diǎn),則使得[OM]取最小值的點(diǎn)m有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1、x2∈R,規(guī)定運(yùn)算“*”:x1*x2=(x1+x22+(x1-x22
(Ⅰ)若x≥0,a>0,求動(dòng)點(diǎn)P(x,
a*x
)的軌跡c;
(Ⅱ)設(shè)P(x,y)是平面內(nèi)任意一點(diǎn),定義:d1(p)=
1
2
(x*x)+(y*y)
,d2(p)=
1
2
(x-a)*(x-a)
,問在(Ⅰ)中的軌跡c上是否存在兩點(diǎn)A1、A2,使之滿足d1(Ai)=
a
d2(Ai
)(i=1、2),若存在,求出a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2∈R,常數(shù)a>0,定義運(yùn)算“*”:x1*x2=(x1+x22-(x1-x22
(1)若x≥0,求動(dòng)點(diǎn)P(x,
x*a
)
的軌跡C的方程;
(2)若a=2,不過原點(diǎn)的直線l與x軸、y軸的交點(diǎn)分別為T,S,并且與(1)中的軌跡C交于不同的兩點(diǎn)P,Q,試求
|
ST
|
|
SP
|
+
|
ST
|
|
SQ
|
的取值范圍;
(3)設(shè)P(x,y)是平面上的任意一點(diǎn),定義d1(P)=
1
2
(x*x)+(y*y)
,d2(P)
=
1
2
(x-a)*(x-a)
.若在(1)中的軌跡C存在不同的兩點(diǎn)A1,A2,使得d1(Ai)=
a
d2(Ai)(i=1,2)
成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)x1、x2∈R,規(guī)定運(yùn)算“*”:x1*x2=(x1+x22+(x1-x22
(Ⅰ)若x≥0,a>0,求動(dòng)點(diǎn)P(x,
a*x
)的軌跡c;
(Ⅱ)設(shè)P(x,y)是平面內(nèi)任意一點(diǎn),定義:d1(p)=
1
2
(x*x)+(y*y)
,d2(p)=
1
2
(x-a)*(x-a)
,問在(Ⅰ)中的軌跡c上是否存在兩點(diǎn)A1、A2,使之滿足d1(Ai)=
a
d2(Ai
)(i=1、2),若存在,求出a的范圍.

查看答案和解析>>

同步練習(xí)冊答案