已知橢圓
x2
16
+
y2
12
=1內(nèi)一點(diǎn)A(1,-1),F(xiàn)為橢圓的右焦點(diǎn),在橢圓上有一點(diǎn)P,求|PA|+2|PF|的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:求出橢圓的a,b,c,以及離心率e,右準(zhǔn)線(xiàn)方程,再由橢圓的第二定義,可得|PF|=ed=
1
2
d,則|PA|+2|PF|=|PA|+d,過(guò)A作AM垂直于l,垂足為M,則AM的長(zhǎng)即為所求,再令y=-1,代入橢圓方程,求得x,即可得到所求P的坐標(biāo).
解答: 解:橢圓的左、右焦點(diǎn)分別為F1(-2,0),F(xiàn)(2,0),
可得,a=4,c=2,b=2
3
,
則離心率e=
c
a
=
1
2
.右準(zhǔn)線(xiàn)l的方程為x=8,
由橢圓的第二定義,可得,e=
|PF|
d
(d為P到右準(zhǔn)線(xiàn)的距離),
則有|PF|=ed=
1
2
d,
則|PA|+2|PF|=|PA|+d,
過(guò)A作AM垂直于l,垂足為M,
即有|PA|+d≥|AM|=8-1=7.
即有最小值為7,
令y=-1,則
x2
16
+
1
12
=1,解得,x=±
2
33
3
,
則取P(
2
33
3
,-1
).
點(diǎn)評(píng):本題考查橢圓的定義和性質(zhì),考查離心率的運(yùn)用,以及橢圓的定義的運(yùn)用:到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線(xiàn)的距離,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O,A,B是平面上不共線(xiàn)的三點(diǎn),直線(xiàn)AB上有一點(diǎn)C,滿(mǎn)足2
AC
+
CB
=
0

(1)用
OA
OB
表示
OC
;
(2)若點(diǎn)D是OB的中點(diǎn),證明四邊形OCAD是梯形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:sin4
π
12
-cos4
π
12
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x≤-1或x≥4},B={x|2a≤x≤a+2}.若A∩B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩條直線(xiàn)l1:ax+by-2=0,l2:(a+1)x-y-2b=0,求分別滿(mǎn)足下列條件的a,b的值:
(1)直線(xiàn)l1過(guò)點(diǎn)(-2,1),并且直線(xiàn)l1與l2垂直;
(2)直線(xiàn)l1與l2平行,并且坐標(biāo)原點(diǎn)到l1,l2的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)y=kx-2,圓x2+y2=1.
(1)k為何值時(shí),直線(xiàn)與圓相交;
(2)k為何值時(shí),直線(xiàn)與圓相切;
(3)k為何值時(shí),直線(xiàn)與圓相離?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)M1(0,0),M2(1,0).以M1為圓心,M1M2為半徑作圓交x軸于點(diǎn)M3(異于M2),記作⊙M1;以M2為圓心,M2M3為半徑作圓交x軸于點(diǎn)M4(異于M3),記作⊙M2;…;以Mn為圓心,MnMn+1為半徑作圓交x軸于點(diǎn)Mn+2(異于Mn+1),記作⊙Mn.當(dāng)n∈N*時(shí),過(guò)原點(diǎn)作傾斜角為30°的直線(xiàn)與⊙Mn交于A(yíng)n,Bn.考察下列論斷:
當(dāng)n=1時(shí),A1B1=2;當(dāng)n=2時(shí),A2B2=
15
;當(dāng)n=3時(shí),A3B3=
35×42+23-1
3
;當(dāng)n=4時(shí),A4B4=
 

由以上論斷推測(cè)一個(gè)一般的結(jié)論:對(duì)于n∈N*,AnBn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c成等差數(shù)列,則函數(shù)y=2ax2+3bx+c與x軸交點(diǎn)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線(xiàn)2ax+by-2=0(a>0,b>0)被圓x2+y2-2x-4y-4=0截得的弦長(zhǎng)為6,m=b+
2
a
,n=a+
1
2b
,則m+n的最小值為.
A、
9
2
B、5
C、
11
2
D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案