【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時,若對任意的恒成立,求實數(shù)的值;

(3)求證:.

【答案】時,單調(diào)遞增區(qū)間為;時,單調(diào)遞減區(qū)間為,

單調(diào)遞增區(qū)間為;(;()證明見解析

【解析】

試題分析:(1)先求導(dǎo)函數(shù)數(shù),利用,即可求函數(shù)的單調(diào)增區(qū)間,即可求函數(shù)的單調(diào)減區(qū)間;(2)若對任意的恒成立,恒成立, 即可求實數(shù)的值;(3)要證原不等式成立,只需證:,即證:,結(jié)合(2)利用裂項相消法求和,根據(jù)放縮法可證.

試題解析:解:(1,時,,上單調(diào)遞增:時,時,單調(diào)遞減,時,單調(diào)遞增.

2)由(1),時,,,即,

上增,在上遞減,,故,得

3時,,時,,

時,

由(2)可知,即,則時,,故

即原不等式成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,ABAD,ADBCAPABAD=1.

(Ⅰ)若直線PBCD所成角的大小為,BC的長;

(Ⅱ)求二面角BPDA的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在創(chuàng)建全國文明衛(wèi)生城過程中,某市創(chuàng)城辦為了調(diào)查市民對創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次).通過隨機抽樣,得到參加問卷調(diào)查的100人的得分(滿分100)統(tǒng)計結(jié)果如下表所示:

(I)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布近似為這100人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),利用該正態(tài)分布,求P(37<Z≤79);

(II)(I)的條件下,創(chuàng)城辦為此次參加問卷調(diào)查的市民制定如下獎勵方案:

①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;

②每次獲贈的隨機話費和對應(yīng)的概率為:

現(xiàn)有市民甲參加此次問卷調(diào)查,記 (單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列與數(shù)學(xué)期望.

附:參考數(shù)據(jù)與公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一家保險公司決定對推銷員實行目標(biāo)管理,即給推銷員確定一個具體的銷售目標(biāo),確定的銷售目標(biāo)是否合適,直接影響到公司的經(jīng)濟效益,如果目標(biāo)定得過高,多數(shù)推銷員完不成任務(wù),會使推銷員失去信心:如果目標(biāo)定得太低,將不利于挖掘推銷員的工作潛力,下面一組數(shù)據(jù)是部分推銷員的月銷售額(單位:千元):

19.58 16.11 16.45 20.45 20.24 21.66 22.45 18.22 12.34

19.35 20.55 17.45 18.78 17.96 19.91 18.12 14.65 14.78

16.78 18.78 18.29 18.51 17.86 19.58 19.21 18.55 16.34

15.54 17.55 14.89 18.94 17.43 17.14 18.02 19.98 17.88

17.32 19.35 15.45 19.58 13.45 21.34 14.00 18.42 23.00

17.52 18.51 17.16 24.56 25.14

請根據(jù)這組樣本數(shù)據(jù)提出使65%的職工能夠完成銷售指標(biāo)的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,是正方形,平面, ,分別是的中點.

(1)求證:平面平面

(2)證明平面平面,并求出到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個袋子中有4個紅球,6個綠球,采用不放回方式從中依次隨機地取出2個球.

1)求第二次取到紅球的概率;

2)求兩次取到的球顏色相同的概率;

3)如果是4個紅球,n個綠球,已知取出的2個球都是紅球的概率為,那么n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓中心在坐標(biāo)原點,焦點在軸上,且過,直線與橢圓交于,兩點(,兩點不是左右頂點),若直線的斜率為時,弦的中點在直線上.

(Ⅰ)求橢圓的方程.

(Ⅱ)若以,兩點為直徑的圓過橢圓的右頂點,則直線是否經(jīng)過定點,若是,求出定點坐標(biāo),若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】表示不超過的最大整數(shù),例,.已知函數(shù),.

(1)求函數(shù)的定義域;

(2)求證:當(dāng)時,總有,并指出當(dāng)為何值時取等號;

(3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,焦距為,直線與橢圓相交于、兩點,關(guān)于直線的對稱點在橢圓上.斜率為的直線與線段相交于點,與橢圓相交于、兩點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求四邊形面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案