精英家教網 > 高中數學 > 題目詳情

【題目】某創(chuàng)業(yè)投資公司擬開發(fā)某種新能源產品,估計能獲得萬元到萬元的投資利益,現準備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不超過萬元,同時獎金不超過收益的

)請分析函數是否符合公司要求的獎勵函數模型,并說明原因.

)若該公司采用函數模型作為獎勵函數模型,試確定最小正整數的值.

【答案】(1);(2)328.

【解析】試題分析:

1題意要求,當時,驗證此式,發(fā)現不合要求;故不符合要求.

2對函數,通過單調性得出的最大值,由最大值得一個范圍,又由恒成立,又得一個范圍,兩者的交集就是我們所求的答案.

試題解析:

(1)對于函數模型

,為增函數,

, 所以恒成立,

但當,, 不恒成立,

故函數模型不符合公司要求

(2)對于函數模型,

,時遞增,

為使對于恒成立, 即要,,

為使對于恒成立, 即要,

恒成立, 恒成立,

, 故只需即可,所以

綜上,, 故最小的正整數的值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓心在直線y=4x上,且與直線l:x+y﹣2=0相切于點P(1,1)
(Ⅰ)求圓的方程
(II)直線kx﹣y+3=0與該圓相交于A、B兩點,若點M在圓上,且有向量 (O為坐標原點),求實數k.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:(x﹣1)2+(y﹣1)2=1上存在4個點到直線x+y﹣m=0(m∈R)的距離等于1﹣
(1)求m的取值范圍;
(2)判斷圓C與圓D:x2+y2﹣2mx=0的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l與圓C:x2+y2+2x﹣4y+a=0相交于A,B兩點,弦AB的中點為M(0,1).
(1)若圓C的半徑為 ,求實數a的值;
(2)若弦AB的長為6,求實數a的值;
(3)當a=1時,圓O:x2+y2=2與圓C交于M,N兩點,求弦MN的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱臺DEF ABCAB=2DE,G,H分別為ACBC的中點.

(1)求證:平面ABED∥平面FGH;

(2)CFBCABBC,求證:平面BCD⊥平面EGH.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線y=ax+1與雙曲線3x2﹣y2=1相交于A、B兩點.
(1)求AB的長;
(2)當a為何值時,以AB為直徑的圓經過坐標原點?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sin2x﹣cos2x+1,下列結論中錯誤的是(
A.f(x)的圖象關于( ,1)中心對稱
B.f(x)在( , )上單調遞減
C.f(x)的圖象關于x= 對稱
D.f(x)的最大值為3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合M={x|x<2},集合N={x|0<x<1},則下列關系中正確的是(
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的對稱中心為坐標原點O,焦點在x軸上,左右焦點分別為F,F,左右頂點分別為A,B,且|F1F2|=4,|AB|=4
(1)求橢圓的方程;
(2)過F1的直線l與橢圓C相交于M,N兩點,若△MF2N的面積為 ,求直線l的方程.

查看答案和解析>>

同步練習冊答案