|
|
某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:
(Ⅰ)求y關(guān)于t的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
,.
|
|
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和.現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B.設(shè)甲、乙兩組的研發(fā)相互獨立.
(Ⅰ)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(Ⅱ)若新產(chǎn)品A研發(fā)成功,預(yù)計企業(yè)可獲利潤120萬元;若新產(chǎn)品B研發(fā)成功,預(yù)計企業(yè)可獲利潤100萬元.求該企業(yè)可獲利潤的分布列和數(shù)學(xué)期望.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
函數(shù)f(x)=sin(x+φ)-2sinφcosx的最大值為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
執(zhí)行下面的程序框圖,如果輸入的x,t均為2,則輸出的S=
|
[ ] |
A. |
4
|
B. |
5
|
C. |
6
|
D. |
7
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
函數(shù)f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)函數(shù).
(Ⅰ)證明:f(x)≥2;
(Ⅱ)若f(3)<5,求a的取值范圍.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
曲線y=xex-1在點(1,1)處切線的斜率等于
|
[ ] |
A. |
2e
|
B. |
e
|
C. |
2
|
D. |
1
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知復(fù)數(shù)z滿足(3-4i)z=25,則z=
|
[ ] |
A. |
-3-4i
|
B. |
-3+4i
|
C. |
3-4i
|
D. |
3+4i
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
若集合P={x|2≤x<4},Q={x|x≥3},則P∩Q等于
|
[ ] |
A. |
{x|3≤x<4}
|
B. |
{x|3<x<4}
|
C. |
{x|2≤x<3}
|
D. |
{x|2≤x≤3}
|
|
|
查看答案和解析>>