17.解不等式:|2x+1|≤|5-3x|

分析 將|2x+1|≤|5-3x|兩邊平方,再由二次不等式的解法即可得到解集.

解答 解:將|2x+1|≤|5-3x|兩邊平方,可得
4x2+4x+1≤25-30x+9x2,
即為(5x-4)(x-6)≥0,
解得x≥6或x≤$\frac{4}{5}$,
即有解集為(-∞,$\frac{4}{5}$]∪[6,+∞).

點(diǎn)評(píng) 本題考查絕對(duì)值不等式的解法,注意運(yùn)用平方法去絕對(duì)值,是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知{an},{bn}均為等比數(shù)列,其前n項(xiàng)和分別為Sn,Tn,若對(duì)任意的n∈N*,總有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{{3}^{n}+1}{4}$,則$\frac{{a}_{3}}{_{3}}$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和是Sn,且2Sn=3an-2n
(1)證明:{an+1}為等比數(shù)列;
(2)證明:$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$<$\frac{1}{4}$;
(3)Tn為數(shù)列{bn}的前n項(xiàng)和,設(shè)bn=log3(an+1),是否存在正整數(shù)m,k,使b${\;}_{k+1}^{2}$=2Tm+19成立,若存在,求出m,k;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,某廣場(chǎng)為一半徑為80米的半圓形區(qū)域,現(xiàn)準(zhǔn)備在其一扇形區(qū)域OAB內(nèi)建兩個(gè)圓形花壇,該扇形的圓心角為變量2θ(0<2θ<π),其中半徑較大的花壇⊙P內(nèi)切于該扇形,半徑較小的花壇⊙Q與⊙P外切,且與OA、OB相切.
(1)求半徑較大的花壇⊙P的半徑(用θ表示);
(2)求半徑較小的花壇⊙Q的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.定義在R上的非常值函數(shù)f(x)滿(mǎn)足y=f(x+1)和y=f(x-1)都是奇函數(shù),則函數(shù)y=f(x)一定是( 。
A.偶函數(shù)B.奇函數(shù)
C.周期函數(shù)D.以上結(jié)論都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若圓C:(x-a)2+[y-(2a-4)]2=1與圓D:x2+(y+1)2=4有公共點(diǎn),則a的取值范圍是(2-$\frac{2\sqrt{5}}{5}$,2+$\frac{2\sqrt{5}}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)的直線(xiàn)交拋物線(xiàn)于A,B兩點(diǎn),過(guò)A,B兩點(diǎn)的切線(xiàn)相交于P,則S△PABmin=( 。
A.16B.8C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x2-2ax+1在區(qū)間(0,1)和(1,3)上各有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求函數(shù)y=-$\frac{x}{\sqrt{{x}^{2}+2x+2}}$的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案