已知函數(shù):數(shù)學(xué)公式
(1)證明:f(x)+2+f(2a-x)=0對(duì)定義域內(nèi)的所有x都成立;
(2)當(dāng)f(x)的定義域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/35874.png' />時(shí),求證:f(x)的值域?yàn)閇-3,-2];
(3)(理)設(shè)函數(shù)g(x)=x2+|(x-a)f(x)|,求g(x)的最小值.
(4)(文)設(shè)函數(shù)g(x)=x2+(x-a)f(x),其中x≤a-1,求g(x)的最小值.

解:(1)
=
∴結(jié)論成立
(2)
當(dāng),,,,
即f(x)值域?yàn)閇-3,-2].
(3)(理)g(x)=x2+|x+1-a|(x≠a)
①當(dāng)
如果時(shí),則函數(shù)在[a-1,a)和(a,+∞)上單調(diào)遞增,∴g(x)min=g(a-1)=(a-1)2
如果.當(dāng)時(shí),g(x)最小值不存在.
②當(dāng),
如果
如果
當(dāng).
綜合得:當(dāng)時(shí),g(x)最小值是;當(dāng)時(shí),g(x)最小值是(a-1)2;當(dāng)時(shí),g(x)最小值為;當(dāng)時(shí),g(x)最小值不存在.
(文)同②
分析:(1)利用函數(shù)函數(shù):.直接代入化簡(jiǎn)即可;
(2)化簡(jiǎn)函數(shù)的,根據(jù)定義域?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/35874.png' />,
可確定f(x)的值域?yàn)閇-3,-2];
(3)利用分類討論,將絕對(duì)值符號(hào)化去,再利用二次函數(shù)配方法求解,應(yīng)注意函數(shù)定義域與函數(shù)對(duì)稱軸之間的關(guān)系.
點(diǎn)評(píng):本題以函數(shù)為載體,考查函數(shù)的性質(zhì),考查函數(shù)的值域,同時(shí)考查學(xué)生分析解決問(wèn)題的能力,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2+bx+c)e2,其中b,c∈R為常數(shù).
(I)若b2>4c-1,討論函數(shù)f(x)的單調(diào)性;
(II)若b2≤4(c-1),且
lim
x→∞
f(x)-c
x
=4
,試證:-6≤b≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=tanx 滿足tan(x+
π
4
)=
1+tanx
1-tanx
由該等式也能推證出y=tanx的周期為π,已知函數(shù)y=f(x)滿足f(x+a)=
1+f(x)
1-f(x)
,x∈R.a(chǎn)為非零的常數(shù),根據(jù)上述論述我們可以類比出函數(shù)f(x)的周期為
4a
4a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx(a≠0)的導(dǎo)函數(shù)f′(x)=2x-2,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(n,Sn)均在函數(shù)y=f(x)的圖象上.若bn=
1
2
(an+3)
(1)當(dāng)n≥2時(shí),試比較bn+12bn的大。
(2)記cn=
1
bn
(n∈N*),試證c1+c2+…+c400<39.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

仔細(xì)閱讀下面問(wèn)題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問(wèn)題的解法,解決下面的問(wèn)題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對(duì)于(1)中的A,設(shè)g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•唐山一模)已知函數(shù)f(x)=
mx+nex
在x=1處取得極值e-1
(I )求函數(shù)f(x)的解析式,并求f(x)的單調(diào)區(qū)間;
(II)當(dāng)x>0 時(shí),試證:f(1+x)>f(1-x).

查看答案和解析>>

同步練習(xí)冊(cè)答案