如圖所示,已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC,AB=2,PA=2,M是PA的中點(diǎn).
(1)求證:平面PCD∥平面MBE;
(2)設(shè)PA=λAB,當(dāng)二面角D﹣ME﹣F的大小為135°,求λ的值.
考點(diǎn):
用空間向量求平面間的夾角;平面與平面平行的判定.
專(zhuān)題:
綜合題.
分析:
(1)證明平面PCD∥平面MBE,利用面面平行的判定定理,證明一個(gè)平面內(nèi)的兩條相交直線(xiàn)平行于另一平面即可;
(2)不妨設(shè)AB=2,則PA=2λ,以A為坐標(biāo)原點(diǎn),AE,AB,AP所在直線(xiàn)分別為x,y,z軸,建立空間直角坐標(biāo)系,求出平面DME的法向量,平面FME的法向量為,利用向量夾角公式,建立方程,即可求得結(jié)論.
解答:
(1)證明:連接AD交BE于點(diǎn)G,連接MG,則點(diǎn)G是正六邊形的中心,所以G是線(xiàn)段AD的中點(diǎn)
∵M(jìn)是PA的中點(diǎn),∴MG∥PD
∵PD⊄平面MBE,MG⊂平面MBE
∴PD∥平面MBE
∵DC∥BE,DC⊄平面MBE,BE⊂平面MBE
∴DC∥平面MBE
∵PD∩DC=D
∴平面PCD∥平面MBE;
(2)解:不妨設(shè)AB=2,則PA=2λ,在正六邊形ABCDEF中,連接AE,過(guò)點(diǎn)F作FH⊥AE,垂足為H,則FH=AFsin∠FAE=1,AH=AFcos∠FAE=,AE=2,以A為坐標(biāo)原點(diǎn),AE,AB,AP所在直線(xiàn)分別為x,y,z軸,建立空間直角坐標(biāo)系,則A(0,0,0),E(2,0,0),D(2,2,0),F(xiàn)(,﹣1,0),M(0,0,λ)
∴=(,0,λ),=(0,2,0),=(﹣,﹣1,0)
設(shè)平面DME的法向量為,
由得,取z=2,則
同理可得平面FME的法向量為
∴=
∵二面角D﹣ME﹣F的大小為135°
∴
∴λ2=6
∵λ>0,
∴
點(diǎn)評(píng):
本題考查面面平行,考查面面角,解題的關(guān)鍵是掌握面面平行的判定方法,確定平面的法向量,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省高三第四次(12月)月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分12分)如圖所示,已知六棱錐的底面是正六邊形,平面,是的中點(diǎn)。
(Ⅰ)求證:平面//平面;
(Ⅱ)設(shè),當(dāng)二面角的大小為時(shí),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年江西省九江市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com