對(duì),不等式所表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130447114229.gif" style="vertical-align:middle;" />,把內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列:
(1)求,
(2)數(shù)列滿足,且時(shí).證明當(dāng)時(shí),
;
(3)在(2)的條件下,試比較與4的大小關(guān)系.
(1)(2)證略(3)
(1)解:,又,∴   ……(2分)
內(nèi)的整點(diǎn)都落在直線上且,故內(nèi)的整點(diǎn)按其到原點(diǎn)的距離從近到遠(yuǎn)排成的點(diǎn)列為,∴.                  ……(4分)
(2)證:當(dāng)時(shí),
,得
……①   
……②                                   ……(6分)
②式減①式,有,得證.                              ……(8分)
(3)解:當(dāng)時(shí), ;
當(dāng)時(shí), ,                             
由(2)知,當(dāng)時(shí),,          ……(10分)
∴當(dāng)時(shí),


,                                   ……(12分)
∴上式
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

觀察下列三角形數(shù)表
1            -----------第一行
2    2         -----------第二行
3   4    3       -----------第三行
4   7    7   4     -----------第四行
5   11  14  11   5
…   …     …     …
…   …   …    …     …
假設(shè)第行的第二個(gè)數(shù)為,
(Ⅰ)依次寫出第六行的所有個(gè)數(shù)字;
(Ⅱ)歸納出的關(guān)系式并求出的通項(xiàng)公式;
(Ⅲ)設(shè)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

)設(shè)數(shù)列滿足條件:,且)
求證:對(duì)于任何正整數(shù)n,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列的前項(xiàng)和為,數(shù)列滿足,且
(1)求的表達(dá)式;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;
(2)設(shè)數(shù)列的通項(xiàng)公式為,問: 是否存在正整數(shù)t,使得
成等差數(shù)列?若存在,求出tm的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)函數(shù)是一次函數(shù),且,,其中自然對(duì)數(shù)的底。(1)求函數(shù)的解析式, (2)在數(shù)列中,,,求數(shù)列的通項(xiàng)公式;(3若數(shù)列滿足,試求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若lga,lgb,lgc依次成等差數(shù)列,則(   )
A.b=B.b=
C.b="ac"D.b=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在等差數(shù)列{an}中,已知a1=20,前n項(xiàng)和為Sn,且S10=S15,求當(dāng)n取何值時(shí),Sn取得最大值,并求出它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若a≠b,數(shù)列a、x1、x2、b和數(shù)列a、y1、y2、y3、b都是等差數(shù)列,則=____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案