【題目】已知函數(shù)f(x)=ax2+bx﹣a+2
(1)若關(guān)于x的不等式f(x)>0的解集是(﹣1,3),求實(shí)數(shù)a,b的值;
(2)若b=2,a>0,解關(guān)于x的不等式f(x)>0.

【答案】
(1)解:不等式f(x)>0的解集是(﹣1,3)

∴﹣1,3是方程ax2+bx﹣a+2=0的兩根,

∴可得 ,解之得


(2)解:當(dāng)b=2時(shí),f(x)=ax2+2x﹣a+2=(x+1)(ax﹣a+2),

∵a>0,∴

①若 ,即a=1,解集為{x|x≠﹣1}.

②若 ,即0<a<1,解集為

③若 ,即a>1,解集為


【解析】(1)根據(jù)題意并結(jié)合一元二次不等式與一元二方程的關(guān)系,可得方程ax2+bx﹣a+2=0的兩根分別為﹣1和3,由此建立關(guān)于a、b的方程組并解之,即可得到實(shí)數(shù)a、b的值;(2)不等式可化成(x+1)(ax﹣a+2)>0,由此討論﹣1與 的大小關(guān)系,分3種情形加以討論,即可得到所求不等式的解集.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,2sin Acos C=2sin B-sin C.

(1)A的大小;

(2)在銳角三角形ABC, ,c+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】宿州某中學(xué)N名教師參加“低碳節(jié)能你我他”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
下表是年齡的頻數(shù)分布表:

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數(shù)

25

m

p

75

25


(1)求正整數(shù)m,p,N的值;
(2)用分層抽樣的方法,從第1、3、5組抽取6人,則第1、3、5組各抽取多少人?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加學(xué)校之間的宣傳交流活動(dòng),求恰有1人在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=﹣ x3+ x2﹣6x+5的單調(diào)增區(qū)間是(
A.(﹣∞,2)和(3,+∞)
B.(2,3)
C.(﹣1,6)
D.(﹣3,﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1 , x2且f(x1)=x1 , 則關(guān)于x的方程3[(f(x)]2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)為(
A.2
B.3
C.4
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)寫(xiě)出曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn). 分別在.上運(yùn)動(dòng),若的最小值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x+2)=f(x),當(dāng)x∈(0,1]時(shí),f(x)=1﹣2|x﹣ |,則函數(shù)g(x)=f[f(x)]﹣ x在區(qū)間[﹣2,2]內(nèi)不同的零點(diǎn)個(gè)數(shù)是(
A.5
B.6
C.7
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)對(duì)任意的a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,且當(dāng)x>0時(shí),f(x)>1
(1)判斷并證明f(x)的單調(diào)性;
(2)若f(4)=3,解不等式f(3m2﹣m﹣2)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的零點(diǎn);
(2)若實(shí)數(shù)t滿足f(log2t)+f(log2 )<2f(2),求f(t)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案