【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖①;B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖②.(注:利潤和投資單位:萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn),怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?
【答案】(1);(2)當A,B兩種產(chǎn)品分別投入2萬元、16萬元時,可使該企業(yè)獲得最大利潤,約為8.5萬元.
【解析】試題分析:⑴設(shè)出函數(shù)解析式,根據(jù)圖象, 即可求得答案;
⑵確定總利潤函數(shù),換元,利用配方法可求最值;
解析:(1)根據(jù)題意可設(shè), 。
則f(x)=0.25x(x≥0),g(x)=2 (x≥0).
(2)設(shè)B產(chǎn)品投入x萬元,A產(chǎn)品投入(18-x)萬元,該企業(yè)可獲總利潤為y萬元.
則y= (18-x)+2,0≤x≤18
令=t,t∈[0,3],
則y= (-t2+8t+18)=- (t-4)2+.
所以當t=4時,ymax==8.5,
此時x=16,18-x=2.
所以當A,B兩種產(chǎn)品分別投入2萬元、16萬元時,可使該企業(yè)獲得最大利潤,約為8.5萬元.
科目:高中數(shù)學 來源: 題型:
【題目】已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線y=0,x=a(0<a≤1)和曲線y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機投一點P,點P落在區(qū)域A內(nèi)的概率是 ,則a的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了研究年宣傳費(單位:千元)對銷售量(單位:噸)和年利潤(單位:千元)的影響,搜集了近 8 年的年宣傳費和年銷售量數(shù)據(jù):
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
38 | 40 | 44 | 46 | 48 | 50 | 52 | 56 | |
45 | 55 | 61 | 63 | 65 | 66 | 67 | 68 |
(Ⅰ)請補齊表格中 8 組數(shù)據(jù)的散點圖,并判斷與中哪一個更適宜作為年銷售量關(guān)于年宣傳費的函數(shù)表達式?(給出判斷即可,不必說明理由)
(Ⅱ)若(Ⅰ)中的,且產(chǎn)品的年利潤與, 的關(guān)系為,為使年利潤值最大,投入的年宣傳費 x 應(yīng)為何值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓 的兩頂點為A,B如圖,離心率為 ,過其焦點F(0,1)的直線l與橢圓交于C,D兩點,并與x軸交于點P,直線AC與直線BD交于點Q.
(Ⅰ)當 時,求直線l的方程;
(Ⅱ)當點P異于A,B兩點時,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四面體中, 平面, , , , .
(Ⅰ)求四面體的四個面的面積中,最大的面積是多少?
(Ⅱ)證明:在線段上存在點,使得,并求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= .
(Ⅰ)證明:AC⊥平面BCDE;
(Ⅱ)求直線AE與平面ABC所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,一塊形狀為四棱柱的木料, 分別為的中點.
(1)要經(jīng)過和將木料鋸開,在木料上底面內(nèi)應(yīng)怎樣畫線?請說明理由;
(2)若底面是邊長為2的菱形, , 平面,且,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于的函數(shù)為上的偶函數(shù),且在區(qū)間上的最大值為10. 設(shè).
⑴ 求函數(shù)的解析式;
⑵ 若不等式在上恒成立,求實數(shù)的取值范圍;
⑶ 是否存在實數(shù),使得關(guān)于的方程有四個不相等的實 數(shù)根?如果存在,求出實數(shù)的范圍,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某射擊運動員每次擊中目標的概率都是0.7.現(xiàn)采用隨機模擬的方法估計該運動員射擊4次,至少擊中2次的概率:先由計算器算出0~9之間取整數(shù)值的隨機數(shù),指定0,1,2表示沒有擊中目標,3,4,5,6,7,8,9表示擊中目標;因為射擊4次,故以每4個隨機數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):
5727 0293 7140 9857 0347
4373 8636 9647 1417 4698
0371 6233 2616 8045 6011
3661 9597 7424 6710 4281
據(jù)此估計,該射擊運動員射擊4次至少擊中2次的概率為( )
A. 0.8 B. 0.85 C. 0.9 D. 0.95
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com