設(shè)m,n為空間的兩條直線,α,β為空間的兩個(gè)平面,給出下列命題:
(1)若m∥α,m∥β,則α∥β;
(2)若m⊥α,m⊥β,則α∥β;
(3)若m∥α,n∥α,則m∥n;
(4)若m⊥α,n⊥α,則m∥n.
上述命題中,所有真命題的序號(hào)是   
【答案】分析:(1)若m∥α,m∥β,則α與β相交或平行;(2)若m⊥α,m⊥β,則α∥β;(3)若m∥α,n∥α,則m與n平交、平行或異面;(4)若m⊥α,n⊥α,由直線平行于平面的性質(zhì)定理知m∥n.
解答:解:(1)若m∥α,m∥β,則α與β相交或平行,故(1)不正確;
(2)若m⊥α,m⊥β,則α∥β,故(2)正確;
(3)若m∥α,n∥α,則m與n平交、平行或異面,故(3)不正確;
(4)若m⊥α,n⊥α,由直線平行于平面的性質(zhì)定理知m∥n,故(4)正確.
故答案為:(2),(4).
點(diǎn)評(píng):本題考查命題的真假判斷和應(yīng)用,解題時(shí)要認(rèn)真審題,注意平面的基本性質(zhì)及其推論的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江二模)設(shè)m、n為空間的兩條不同的直線,α、β為空間的兩個(gè)不同的平面,給出下列命題:
①若m∥α,m∥β,則α∥β;
②若m⊥α,m⊥β,則α∥β;
③若m∥α,n∥α,則m∥n;
④若m⊥α,n⊥α,則m∥n.
上述命題中,所有真命題的序號(hào)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n為空間的兩條直線,α,β為空間的兩個(gè)平面,給出下列命題:
①若m∥α,m∥β,則α∥β;      
②若m⊥α,m⊥β,則α∥β;
③若m∥α,n∥α,則m∥n;    
④若m⊥α,n⊥α,則m∥n;
上述命題中,其中假命題的序號(hào)是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南通一模)設(shè)m,n為空間的兩條直線,α,β為空間的兩個(gè)平面,給出下列命題:
(1)若m∥α,m∥β,則α∥β;
(2)若m⊥α,m⊥β,則α∥β;
(3)若m∥α,n∥α,則m∥n;
(4)若m⊥α,n⊥α,則m∥n.
上述命題中,所有真命題的序號(hào)是
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省宿遷市沭陽(yáng)高中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)m,n為空間的兩條直線,α,β為空間的兩個(gè)平面,給出下列命題:
①若m∥α,m∥β,則α∥β;      
②若m⊥α,m⊥β,則α∥β;
③若m∥α,n∥α,則m∥n;    
④若m⊥α,n⊥α,則m∥n;
上述命題中,其中假命題的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年浙江省金麗衢十二校高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

設(shè)m、n為空間的兩條不同的直線,α、β為空間的兩個(gè)不同的平面,給出下列命題:
①若m∥α,m∥β,則α∥β;
②若m⊥α,m⊥β,則α∥β;
③若m∥α,n∥α,則m∥n;
④若m⊥α,n⊥α,則m∥n.
上述命題中,所有真命題的序號(hào)是( )
A.①②
B.③④
C.①③
D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案