14.若將函數(shù)$y=sin({2x+\frac{π}{3}})$的圖象向右平移m(m>0)個(gè)單位長(zhǎng)度,所得函數(shù)圖象關(guān)于y軸對(duì)稱,則m的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性、誘導(dǎo)公式,求得m的最小值.

解答 解:將函數(shù)$y=sin({2x+\frac{π}{3}})$的圖象向右平移m(m>0)個(gè)單位長(zhǎng)度,
所得函數(shù)圖象對(duì)應(yīng)的函數(shù)解析式為 y=sin[2(x-m)+$\frac{π}{3}$]=sin(2x+$\frac{π}{3}$-2m),
根據(jù)所得圖象關(guān)于y軸對(duì)稱,
可得 $\frac{π}{3}$-2m=kπ+$\frac{π}{2}$,即m=-$\frac{1}{2}$kπ-$\frac{π}{12}$,k∈Z,
故m的最小值為$\frac{5π}{12}$,
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性、誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列四組函數(shù)中表示同一函數(shù)的是(  )
A.f(x)=$\root{3}{{x}^{3}}$與$g(x)=\sqrt{x^2}$B.f(x)=|x|與$g(x)={({\sqrt{x}})^2}$
C.$f(x)=\sqrt{1-x}×\sqrt{1+x}$與$g(x)=\sqrt{1-{x^2}}$D.f(x)=x0與g(x)=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=(16x-16-x)log2|x|的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.計(jì)算:$\lim_{n→∞}\frac{{n-3{n^2}}}{{5{n^2}+1}}$=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.對(duì)于任意實(shí)數(shù)x,[x]表示不超過(guò)x的最大整數(shù),如[-0,2]=-1,[1.72]=1,已知${a_n}=[{\frac{n}{3}}]({n∈{N^*}}),{S_n}$為數(shù)列{an}的前項(xiàng)和,則S2017=677712.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在等邊△ABC中,D,E分別是AB,AC邊上的中點(diǎn),那么以B,C為焦點(diǎn)且過(guò)點(diǎn)D,E的雙曲線的離心率是$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=(sinx+cosx)2+2cos2x(x∈R).
(Ⅰ)求函數(shù)f(x)的最大值及相應(yīng)的x取值;
(Ⅱ)該函數(shù)的圖象可以由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若曲線y=kx2-lnx在點(diǎn)(1,k)處的切線與直線x+2y+1=0垂直,則k=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{x-1}{ax}$-lnx(a≠0).
(Ⅰ)當(dāng)a=1時(shí),求f(x)在[$\frac{1}{e}$,e]上的最大值和最小值(其中e是自然對(duì)數(shù)的底數(shù));
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)求證:ln$\frac{{e}^{2}}{x}$≤$\frac{1+x}{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案