某單位決定對(duì)本單位職工實(shí)行年醫(yī)療費(fèi)用報(bào)銷制度,擬制定年醫(yī)療總費(fèi)用在2萬元至10萬元(包括2萬元和10萬元)的報(bào)銷方案,該方案要求同時(shí)具備下列三個(gè)條件:①報(bào)銷的醫(yī)療費(fèi)用y(萬元)隨醫(yī)療總費(fèi)用x(萬元)增加而增加;②報(bào)銷的醫(yī)療費(fèi)用不得低于醫(yī)療總費(fèi)用的50%;③報(bào)銷的醫(yī)療費(fèi)用不得超過8萬元.
(1)請(qǐng)你分析該單位能否采用函數(shù)模型y=0.05(x2+4x+8)作為報(bào)銷方案;
(2)若該單位決定采用函數(shù)模型y=x-2lnx+a(a為常數(shù))作為報(bào)銷方案,請(qǐng)你確定整數(shù)a的值.(參考數(shù)據(jù):ln2≈0.69,ln10≈2.3)
(1)不符合(2)a的值為1.
【解析】審題引導(dǎo):正確理解三個(gè)條件:①要求模型函數(shù)在[2,10]上是增函數(shù);②要滿足y≥恒成立;③要滿足y的最大值小于8.
規(guī)范解答:【解析】
(1)函數(shù)y=0.05(x2+4x+8)在[2,10]上是增函數(shù),滿足條件①,(2分)
當(dāng)x=10時(shí),y有最大值7.4萬元,小于8萬元,滿足條件③.(4分)
但當(dāng)x=3時(shí),y=,即y≥不恒成立,不滿足條件②,故該函數(shù)模型不符合該單位報(bào)銷方案.(6分)
(2)對(duì)于函數(shù)模型y=x-2lnx+a,設(shè)f(x)=x-2lnx+a,則f′(x)=1-=≥0.∴f(x)在[2,10]上是增函數(shù),滿足條件①.由條件②,得x-2lnx+a≥,即a≥2lnx-在x∈[2,10]上恒成立,令g(x)=2lnx-,則g′(x)=-=,由g′(x)>0得0<x<4,∴g(x)在(0,4)上是增函數(shù),在(4,10)上是減函數(shù).
∴a≥g(4)=2ln4-2=4ln2-2.(10分)
由條件③,得f(10)=10-2ln10+a≤8,解得a≤2ln10-2.
另一方面,由x-2lnx+a≤x,得a≤2lnx在x∈[2,10]上恒成立,∴a≤2ln2.(12分)
綜上所述,a的取值范圍為[4ln2-2,2ln2],
∴滿足條件的整數(shù)a的值為1.(14分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=,x∈[1,+∞).
(1)當(dāng)a=時(shí),求f(x)的最小值;
(2)若對(duì)任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)和g(x)分別由下表給出:
x | 1 | 2 | 3 | 4 | x | 1 | 2 | 3 | 4 |
f(x) | 2 | 3 | 4 | 1 | g(x) | 2 | 1 | 4 | 3 |
則f(g(1))=____________,滿足g(f(x))=1的x值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時(shí)練習(xí)卷(解析版) 題型:填空題
已知函數(shù)y=f(x)是偶函數(shù),對(duì)于x∈R都有f(x+6)=f(x)+f(3)成立.當(dāng)x1、x2∈[0,3],且x1≠x2時(shí),都有>0,給出下列命題:
①f(3)=0;
②直線x=-6是函數(shù)y=f(x)的圖象的一條對(duì)稱軸;
③函數(shù)y=f(x)在[-9,-6]上為單調(diào)增函數(shù);
④函數(shù)y=f(x)在[-9,9]上有4個(gè)零點(diǎn).
其中正確的命題是________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:填空題
某駕駛員喝了mL酒后,血液中的酒精含量f(x)(mg/mL)隨時(shí)間x(h)變化的規(guī)律近似滿足表達(dá)式f(x)=《酒后駕車與醉酒駕車的標(biāo)準(zhǔn)及相應(yīng)的處罰》規(guī)定為駕駛員血液中酒精含量不得超過0.02mg/mL,據(jù)此可知,此駕駛員至少要過________h后才能開車.(精確到1h)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:解答題
我國遼東半島普蘭附近的泥炭層中,發(fā)掘出的古蓮子,至今大部分還能發(fā)芽開花,這些古蓮子是多少年以前的遺物呢?要測定古物的年代,可用放射性碳法.在動(dòng)植物的體內(nèi)都含有微量的放射性14C,動(dòng)植物死亡后,停止了新陳代謝,14C不再產(chǎn)生,且原有的14C會(huì)自動(dòng)衰變,經(jīng)過5570年(叫做14C的半衰期),它的殘余量只有原始量的一半,經(jīng)過科學(xué)家測定知道,若14C的原始含量為a,則經(jīng)過t年后的殘余量a′(與a之間滿足a′=a·e-kt).現(xiàn)測得出土的古蓮子中14C殘余量占原量的87.9%,試推算古蓮子的生活年代.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:填空題
某地高山上溫度從山腳起每升高100m降低0.6℃.已知山頂?shù)臏囟仁?/span>14.6℃,山腳的溫度是26℃,則此山的高為________m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時(shí)練習(xí)卷(解析版) 題型:填空題
用長為90cm、寬為48cm的長方形鐵皮做一個(gè)無蓋的容器,先在四角分別截去一個(gè)小正方形,然后把四邊翻折90°角,再焊接而成,則該容器的高為________cm時(shí),容器的容積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第10課時(shí)練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=2x-3x,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com