在R上可導(dǎo),,則(    )
A.B.C.D.
B

試題分析:欲求積分,則必須求出被積函數(shù).由已知可知函數(shù)的解析式并不明確(未知,但為常數(shù)).所以對原函數(shù)求導(dǎo),可得,令,,所以,則.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)在x∈[-
1
2
,1)
上的最大值為
3
8
,求實(shí)數(shù)b的值;
(2)若對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(3)在(1)的條件下,設(shè)F(x)=
f(x),x<1
g(x),x≥1
,對任意給定的正實(shí)數(shù)a,曲線y=F(x)上是否存在兩點(diǎn)P、Q,使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x2+
2
x
,g(x)=(
1
2
)x+m
,若?x1∈[1,2],?x2∈[-1,1],使得f(x1)≥g(x2),則實(shí)數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a、b的值;
(2)當(dāng)a2=4b時(shí),求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1-x
ax
+lnx

(Ⅰ)若函數(shù)f(x)在[1,+∞)上是增函數(shù),求正實(shí)數(shù)a的取值范圍;
(Ⅱ)若a=1,k∈R且k<
1
e
,設(shè)F(x)=f(x)+(k-1)lnx,求函數(shù)F(x)在[
1
e
,e]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

把區(qū)間[a,b](a<b)n等分后,第i個(gè)小區(qū)間是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則的大小關(guān)系為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

由曲線的邊界所圍成區(qū)域的面積為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等于(    )
A.B.2C.-2D.+2

查看答案和解析>>

同步練習(xí)冊答案