【題目】已知數(shù)列{an}滿足a1=1,Sn=2n﹣an(n∈N*).
(1)計(jì)算a2 , a3 , a4 , 并由此猜想通項(xiàng)公式an
(2)用數(shù)學(xué)歸納法證明(1)中的猜想.

【答案】
(1)解:當(dāng)n=1時(shí),a1=S1=1.

當(dāng)n=2時(shí),a1+a2=S2=2×2﹣a2,∴a2=

當(dāng)n=3時(shí),a1+a2+a3=S3=2×3﹣a3,∴a3=

當(dāng)n=4時(shí),a1+a2+a3+a4=S4=2×4﹣a4,∴a4= ,

由此猜想an= (n∈N*


(2)解:證明:①當(dāng)n=1時(shí),a1=S1=1,結(jié)論成立.

②假設(shè)n=k(k≥1且k∈N*)時(shí),結(jié)論成立,即ak=

那么n=k+1(k≥1且k∈N*)時(shí),ak+1=Sk+1﹣Sk=2(k+1)﹣ak+1﹣2k+ak=2+ak﹣ak+1

∴2ak+1=2+ak=2+ =

∴ak+1= ,

由①②可知,對(duì)n∈N*,an= 都成立


【解析】(1)根據(jù)Sn=2n﹣an , 利用遞推公式,求出a2 , a3 , a4 . (2)總結(jié)出規(guī)律求出an , 然后利用歸納法進(jìn)行證明,檢驗(yàn)n=1時(shí)等式成立,假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方

(1)求圓C的方程;
(2)過(guò)點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問(wèn)在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由;
(3)求證:當(dāng)x∈(0,e]時(shí),e2x2 x>(x+1)lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)y=f(x)的最小正周期;
(2)已知△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且a,b,c成等比數(shù)列,求f(B)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2﹣12x﹣14y+60=0及其上的一點(diǎn)A(2,4).
(Ⅰ)是否存在直線l:y=kx+3與圓M有兩個(gè)交點(diǎn)B,C,并且|AB|=|AC|,若有,求此直線方程,若沒(méi)有,請(qǐng)說(shuō)明理由;
(Ⅱ)設(shè)點(diǎn)T(t,0)滿足:存在圓M上的兩點(diǎn)P和Q,使得 = ,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,
(1)若a=﹣1,求f(x)的單調(diào)區(qū)間;
(2)若f(x)有最大值3,求a的值.
(3)若f(x)的值域是(0,+∞),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z=bi(b∈R), 是實(shí)數(shù),i是虛數(shù)單位.
(1)求復(fù)數(shù)z;
(2)若復(fù)數(shù)(m+z)2所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說(shuō)法:①f(x)=3﹣ 不可能是k型函數(shù); ②若函數(shù)y=﹣ x2+x是3型函數(shù),則m=﹣4,n=0;
③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為 ;
④若函數(shù)y= (a≠0)是1型函數(shù),則n﹣m的最大值為
下列選項(xiàng)正確的是(
A.①③
B.②③
C.②④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=ax2+bx(a>0,b>0)在點(diǎn)(1,f(1))處的切線斜率為2,則 的最小值是(
A.10
B.9
C.8
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案