已知函數(shù)f(x)= -ax(a∈R,e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,函數(shù)g(x)=(x-m)f(x)-+x2+x在區(qū)間(0,+)上為增函數(shù),求整數(shù)m 的最大值.

(1)所以為減函數(shù),在為增函數(shù);(2)最大值為1

解析試題分析:(1)利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;(2)解決類似的問題時(shí),注意區(qū)分函數(shù)的最值和極值.求函數(shù)的最值時(shí),要先求函數(shù)在區(qū)間內(nèi)使的點(diǎn),再計(jì)算函數(shù)在區(qū)間內(nèi)所有使的點(diǎn)和區(qū)間端點(diǎn)處的函數(shù)值,最后比較即得.(3)第二問關(guān)鍵是分離參數(shù),把所求問題轉(zhuǎn)化為求函數(shù)的最小值問題.(4)若可導(dǎo)函數(shù)在指定的區(qū)間上單調(diào)遞增(減),求參數(shù)問題,可轉(zhuǎn)化為恒成立,從而構(gòu)建不等式,要注意“=”是否可以取到.
試題解析:解:(Ⅰ)定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/ce/22/ceb223054f4731e91f98739a55f7f4e7.png" style="vertical-align:middle;" />,,
當(dāng)時(shí),,所以上為增函數(shù);      2分
當(dāng)時(shí),由,且當(dāng)時(shí),,
當(dāng)時(shí)
所以為減函數(shù),在為增函數(shù).     6分
(Ⅱ)當(dāng)時(shí),,若在區(qū)間上為增函數(shù),
恒成立,
恒成立           8分
,;,;
,可知,,
又當(dāng)時(shí),
所以函數(shù)只有一個(gè)零點(diǎn),設(shè)為,即
;    9分
由上可知當(dāng)時(shí),即;當(dāng)時(shí),即,
所以,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求在區(qū)間上的最值;
(Ⅱ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),在點(diǎn)處的切線方程是(e為自然對數(shù)的底)。
(1)求實(shí)數(shù)的值及的解析式;
(2)若是正數(shù),設(shè),求的最小值;
(3)若關(guān)于x的不等式對一切恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的減區(qū)間是(-2,2)
(1)試求m,n的值;
(2)求過點(diǎn)且與曲線相切的切線方程;
(3)過點(diǎn)A(1,t),是否存在與曲線相切的3條切線,若存在,求實(shí)數(shù)t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是實(shí)數(shù),函數(shù).
(1)若,求的值及曲線在點(diǎn)處的切線方程.
(2)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)
(1)求函數(shù)的極值;
(2)設(shè)函數(shù),對,都有,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖像與函數(shù)的圖像有3個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)曲線在點(diǎn)(1,1)處的切線與軸的交點(diǎn)的橫坐標(biāo)為,令,則的值為               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

曲線以點(diǎn)(1,-)為切點(diǎn)的切線的傾斜角為       

查看答案和解析>>

同步練習(xí)冊答案