2.設(shè)Sn是等比數(shù)列{an}的前n項和,S4=5S2,則此數(shù)列的公比q=( 。
A.-2或-1B.1或2C.±1或2D.±2或-1

分析 對q分類討論,利用等比數(shù)列的求和公式即可得出.

解答 解:q=1時不滿足條件,舍去.
q≠1時,∵S4=5S2,則$\frac{{a}_{1}(1-{q}^{4})}{1-q}$=$\frac{5{a}_{1}(1-{q}^{2})}{1-q}$,
∴1-q4=5(1-q2),
∴(q2-1)(q2-4)=0,q≠1,
解得q=-1,或±2.
故選:D.

點評 本題考查了等比數(shù)列的求和公式,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知圓C:x2+y2+2kx+2y+k2=0(k∈R)和定點P(1,-1),若過P點可以作兩條直線與圓C相切,則k的取值范圍是(0,+∞)∪(-∞,-2)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.用描述法表示圖中陰影部分的點(含邊界)的坐標的集合為{(x,y)|xy>0,且-1≤x≤2,-$\frac{1}{2}$≤y≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如表所示:
X1234
Y51484542
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)完成下表,并求所種作物的平均年收獲量:
Y51484542
頻數(shù)    
(2)在所種年收獲量為51或48的作物中隨機選取兩株求收獲量之和,收獲量之和為t的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.探究函數(shù)f(x)=2x+$\frac{8}{x}$,x∈(0,+∞)最小值,并確定取得最小值時x的值.列表如下:
x0.511.51.71.922.12.22.33457
y17108.348.18.0188.018.048.088.61011.615.14
請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)函數(shù)f(x)=2x+$\frac{8}{x}$(x>0)在區(qū)間(0,2)上遞減;函數(shù)f(x)=2x+$\frac{8}{x}$(x>0)在區(qū)間(2,+∞)上遞增.當x=2時,y最小=8.
(2)證明:函數(shù)f(x)=2x+$\frac{8}{x}$(x>0)在區(qū)間(0,2)遞減.
(3)思考:函數(shù)f(x)=2x+$\frac{8}{x}$(x<0)時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和Sn=n2-4n.
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最大或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{lnx,x>1}\end{array}\right.$,若方程f(x)=mx-$\frac{1}{3}$恰有四個不等的實數(shù)根,則實數(shù)m的取值范圍是($\frac{1}{3}$,${e}^{-\frac{2}{3}}$) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\frac{1}{2}$x2-2ax+blnx+2a2在x=1處取得極值$\frac{1}{2}$,則a+b=( 。
A.-1B.2C.-1或1D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=|x|-1的圖象是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案