設(shè)a,b,c∈R+,且a+b+c=3,則
1
a
+
1
b
+
1
c
的最小值為( 。
分析:利用條件a+b+c=3,構(gòu)造柯西不等式(1+1+1)2≤(a+b+c)(
1
a
+
1
b
+
1
c
),進(jìn)行求解.
解答:解:由柯西不等式(1+1+1)2≤(a+b+c)(
1
a
+
1
b
+
1
c
),
得32≤3(
1
a
+
1
b
+
1
c
),
所以
1
a
+
1
b
+
1
c
≥3,即
1
a
+
1
b
+
1
c
的最小值為3.
故選B.
點(diǎn)評:本題主要考查了函數(shù)的最值,以及柯西不等式的應(yīng)用,要求熟練掌握柯西不等式的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈R,則“ac2<bc2”是“a<b”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“設(shè)a、b、c∈R,若ac2>bc2則a>b”以及它的逆命題、否命題、逆否命題中,真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈R且abc≠0,則由代數(shù)式
a
|a|
+
b
|b|
+
c
|c|
+
abc
|abc|
的值組成的集合為
{-4,0,4}
{-4,0,4}
.(用列舉法表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈R,則“ac=bc”是“a=b”的(  )條件.

查看答案和解析>>

同步練習(xí)冊答案