φπ”曲線ysin(2xφ)過坐標(biāo)原點(diǎn)(  )

A充分不必要條件 B.必要不充分條件

C充分必要條件 D.既不充分也不必要條件

 

A

【解析】曲線ysin(2xφ)過坐標(biāo)原點(diǎn),sin φ0,φkπk∈Z,故選A.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第2課時(shí)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)x2(x≠0aR)

(1)判斷函數(shù)f(x)的奇偶性;

(2)f(x)在區(qū)間[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題四練習(xí)卷(解析版) 題型:選擇題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S36,則5a1a7的值為(  )

A12 B10 C24 D6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:解答題

已知直線l14x3y60和直線l2x=- (p>2).若拋物線Cy22px上的點(diǎn)到直線l1和直線l2的距離之和的最小值為2.

(1)求拋物線C的方程;

(2)若拋物線上任意一點(diǎn)M處的切線l與直線l2交于點(diǎn)N,試問在x軸上是否存在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題八練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)2x1,x∈N*.?x0n∈N*,使f(x0)f(x01)f(x0n)63成立,則稱(x0,n)為函數(shù)f(x)的一個(gè)生成點(diǎn).則函數(shù)f(x)生成點(diǎn)共有(  )

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題五練習(xí)卷(解析版) 題型:解答題

如圖所示,四棱錐PABCD的底面ABCD為一直角梯形,其中BAADCDAD,CDAD2AB,PA底面ABCDEPC的中點(diǎn).

(1)求證:BE平面PAD;

(2)BE平面PCD,求平面EBD與平面BDC夾角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題五練習(xí)卷(解析版) 題型:選擇題

已知m,n是空間兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列命題中為真的是(  )

Aαβ,m?α,n?β,則mn

Bαγm,βγn,mn,則αβ

Cm?β,αβ,則mα

Dmβ,mα,則αβ

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)xln x,則曲線yf(x)x1處的切線方程為(  )

Axy30 Bxy30 Cxy30 Dxy30

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題一練習(xí)卷(解析版) 題型:選擇題

設(shè)a(13x2)dx4,則二項(xiàng)式x26的展開式中不含x3項(xiàng)的系數(shù)和是(  )

A160 B160 C161 D160

 

查看答案和解析>>

同步練習(xí)冊(cè)答案