精英家教網 > 高中數學 > 題目詳情
已知f(x)=x2+2x•f′(1),則f′(0)=   
【答案】分析:要求某點處函數的導數,應先求函數解析式f(x),本題求函數解析式f(x)關鍵求出未知f′(1).
解答:解:f'(x)=2x+2f'(1)⇒f'(1)=2+2f'(1),∴f'(1)=-2,有f(x)=x2-4x,f'(x)=2x-4,∴f'(0)=-4.
點評:本題考查導數的運算,注意分析所求.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=x2+ax+b(a,b∈R的定義域為[-1,1].
(1)記|f(x)|的最大值為M,求證:M≥
1
2
.
(2)求出(1)中的M=
1
2
時,f(x)
的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x2+x+1,則f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x2+2x,數列{an}滿足a1=3,an+1=f′(an)-n-1,數列{bn}滿足b1=2,bn+1=f(bn).
(1)求證:數列{an-n}為等比數列;
(2)令cn=
1
an-n-1
,求證:c2+c3+…+cn
2
3
;
(3)求證:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)確定k的值;
(2)求f(x)+
9f(x)
的最小值及對應的x值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一個奇函數g(x)和一個偶函數h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數,求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,比較f(1)和
16
的大小.

查看答案和解析>>

同步練習冊答案