為橢圓
上一點(diǎn),
為兩焦點(diǎn),
,則橢圓
的離心率
.
試題分析:
,由余弦定理得
,
,所以
,又
,所以橢圓
的離心率
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,直線
與以原點(diǎn)為圓心、橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓
的方程;
(2)如圖,
、
、
是橢圓
的頂點(diǎn),
是橢圓
上除頂點(diǎn)外的任意點(diǎn),直線
交
軸于點(diǎn)
,直線
交
于點(diǎn)
,設(shè)
的斜率為
,
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若
在
處取得極值,求
的值;
(2)求
的單調(diào)區(qū)間;
(3)若
且
,函數(shù)
,若對于
,總存在
使得
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓的左、右焦點(diǎn)分別為
和
,且橢圓過點(diǎn)
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點(diǎn)
作不與
軸垂直的直線
交該橢圓于
兩點(diǎn),
為橢圓的左頂點(diǎn),試判斷
的大小是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
、
分別是橢圓
:
的左、右焦點(diǎn),點(diǎn)
在直線
上,線段
的垂直平分線經(jīng)過點(diǎn)
.直線
與橢圓
交于不同的兩點(diǎn)
、
,且橢圓
上存在點(diǎn)
,使
,其中
是坐標(biāo)原點(diǎn),
是實(shí)數(shù).
(Ⅰ)求
的取值范圍;
(Ⅱ)當(dāng)
取何值時(shí),
的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,
,
為橢圓
的兩個(gè)焦點(diǎn),點(diǎn)
在橢圓
上,且
的周長為
。
(Ⅰ)求橢圓
的方程
(Ⅱ)設(shè)直線
與橢圓
相交于
、
兩點(diǎn),若
(
為坐標(biāo)原點(diǎn)),求證:直線
與圓
相切.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的離心率為
,直線
:
與以原點(diǎn)為圓心、以橢圓
的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)橢圓
的左焦點(diǎn)為
,右焦點(diǎn)
,直線
過點(diǎn)
且垂直于橢圓的長軸,動(dòng)直線
垂直
于點(diǎn)
,
線段
垂直平分線交
于點(diǎn)
,求點(diǎn)
的軌跡
的方程;
(Ⅲ)設(shè)
與
軸交于點(diǎn)
,不同的兩點(diǎn)
在
上,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
的左、右焦點(diǎn)分別為F
1、F
2,P是橢圓上的一點(diǎn),
,且
,垂足為
,若四邊形
為平行四邊形,則橢圓的離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,離心率為
,它的一個(gè)頂點(diǎn)恰好是拋物線
的焦點(diǎn).
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點(diǎn)
的直線
與橢圓
相切
,直線
與
軸交于點(diǎn)
,當(dāng)
為何值時(shí)
的面積有最小值?并求出最小值.
查看答案和解析>>