已知參賽號(hào)碼為1~4號(hào)的四名射箭運(yùn)動(dòng)員參加射箭比賽.
(1)通過抽簽將他們安排到1~4號(hào)靶位,試求恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與其參賽號(hào)碼相同的概率;
(2)記1號(hào),2號(hào)射箭運(yùn)動(dòng)員,射箭的環(huán)數(shù)為ξ(ξ所有取值為0,1,2,3…,10).
根據(jù)教練員提供的資料,其概率分布如下表:
ξ12345678910
P10.060.040.060.30.20.30.04
P20.040.050.050.20.320.320.02
①若1,2號(hào)運(yùn)動(dòng)員各射箭一次,求兩人中至少有一人命中8環(huán)的概率;
②判斷1號(hào),2號(hào)射箭運(yùn)動(dòng)員誰射箭的水平高?并說明理由.
【答案】分析:(1)本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是把4名運(yùn)動(dòng)員安排到4個(gè)位置,從4名運(yùn)動(dòng)員中任取一名,其靶位號(hào)與參賽號(hào)相同,有C41種方法,另3名運(yùn)動(dòng)員靶位號(hào)與參賽號(hào)均不相同的方法有2種,得到概率.
(2)①至少有一人命中8環(huán)的對(duì)立事件是兩人各射擊一次,都未擊中8環(huán),先做出都未擊中8環(huán)的概率,用對(duì)立事件的概率公式得到結(jié)果,②根據(jù)所給的數(shù)據(jù)做出兩個(gè)人的擊中環(huán)數(shù)的期望,比較兩個(gè)期望值的大小,得到結(jié)論2號(hào)射箭運(yùn)動(dòng)員的射箭水平高.
解答:解:(1)由題意知本題是一個(gè)等可能事件的概率,
試驗(yàn)發(fā)生包含的事件是把4名運(yùn)動(dòng)員安排到4個(gè)位置,
從4名運(yùn)動(dòng)員中任取一名,其靶位號(hào)與參賽號(hào)相同,有C41種方法,
另3名運(yùn)動(dòng)員靶位號(hào)與參賽號(hào)均不相同的方法有2種,
∴恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與參賽號(hào)相同的概率為
(2)①由表可知,兩人各射擊一次,都未擊中8環(huán)的概率為
P=(1-0.2)(1-0.32)=0.544
∴至少有一人命中8環(huán)的概率為p=1-0.544=0.456
②∵Eξ1=4×0.06+5×0.04+6×0.06+7×0.3+8×0.2+9×0.3+10×0.04=7.6
2=4×0.04+5×0.05+6×0.05+7×0.2+8×0.32+9×0.32+10×0.02=7.75
所以2號(hào)射箭運(yùn)動(dòng)員的射箭水平高
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列和期望,考查等可能事件的概率,考查對(duì)立事件的概率,考查相互獨(dú)立事件同時(shí)發(fā)生的概率,是一個(gè)綜合題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知參賽號(hào)碼為1~4號(hào)的四名射箭運(yùn)動(dòng)員參加射箭比賽.
(1)通過抽簽將他們安排到1~4號(hào)靶位,試求恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與其參賽號(hào)碼相同的概率;
(2)記1號(hào),2號(hào)射箭運(yùn)動(dòng)員,射箭的環(huán)數(shù)為ξ(ξ所有取值為0,1,2,3…,10).
根據(jù)教練員提供的資料,其概率分布如下表:
ξ 0 1 2 3 4 5 6 7 8 9 10
P1 0 0 0 0 0.06 0.04 0.06 0.3 0.2 0.3 0.04
P2 0 0 0 0 0.04 0.05 0.05 0.2 0.32 0.32 0.02
①若1,2號(hào)運(yùn)動(dòng)員各射箭一次,求兩人中至少有一人命中8環(huán)的概率;
②判斷1號(hào),2號(hào)射箭運(yùn)動(dòng)員誰射箭的水平高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分10分)已知參賽號(hào)碼為1~4號(hào)的四名射箭運(yùn)動(dòng)員參加射箭比賽.

(Ⅰ)通過抽簽將他們安排到1~4號(hào)靶位,試求恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與其參

賽號(hào)碼相同的概率;

(Ⅱ)設(shè)1號(hào),2號(hào)射箭運(yùn)動(dòng)員射箭的環(huán)數(shù)為,其概率分布如下表:

4

5

6

7

8

9

10

0.06

0.04

0.06

0.3

0.2

0.3

0.04

0.04

0.05

0.05

0.2

0.32

0.32

0.02

①若1,2號(hào)運(yùn)動(dòng)員各射箭一次,求兩人中至少有一人命中8環(huán)的概率;

②判斷1號(hào),2號(hào)射箭運(yùn)動(dòng)員誰射箭的平均水平高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分10分)已知參賽號(hào)碼為1~4號(hào)的四名射箭運(yùn)動(dòng)員參加射箭比賽.

(Ⅰ)通過抽簽將他們安排到1~4號(hào)靶位,試求恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與其參

賽號(hào)碼相同的概率;

(Ⅱ)設(shè)1號(hào),2號(hào)射箭運(yùn)動(dòng)員射箭的環(huán)數(shù)為,其概率分布如下表:

4

5

6

7

8

9

10

0.06

0.04

0.06

0.3

0.2

0.3

0.04

0.04

0.05

0.05

0.2

0.32

0.32

0.02

①若1,2號(hào)運(yùn)動(dòng)員各射箭一次,求兩人中至少有一人命中8環(huán)的概率;

②判斷1號(hào),2號(hào)射箭運(yùn)動(dòng)員誰射箭的平均水平高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知參賽號(hào)碼為1~4號(hào)的四名射箭運(yùn)動(dòng)員參加射箭比賽.
(1)通過抽簽將他們安排到1~4號(hào)靶位,試求恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與其參賽號(hào)碼相同的概率;
(2)記1號(hào),2號(hào)射箭運(yùn)動(dòng)員,射箭的環(huán)數(shù)為ξ(ξ所有取值為0,1,2,3…,10).
根據(jù)教練員提供的資料,其概率分布如下表:
ξ12345678910
P10.060.040.060.30.20.30.04
P20.040.050.050.20.320.320.02
①若1,2號(hào)運(yùn)動(dòng)員各射箭一次,求兩人中至少有一人命中8環(huán)的概率;
②判斷1號(hào),2號(hào)射箭運(yùn)動(dòng)員誰射箭的水平高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知參賽號(hào)碼為1~4號(hào)的四名射箭運(yùn)動(dòng)員參加射箭比賽.
(1)通過抽簽將他們安排到1~4號(hào)靶位,試求恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與其參賽號(hào)碼相同的概率;
(2)記1號(hào),2號(hào)射箭運(yùn)動(dòng)員,射箭的環(huán)數(shù)為ξ(ξ所有取值為0,1,2,3…,10).
根據(jù)教練員提供的資料,其概率分布如下表:
ξ12345678910
P10.060.040.060.30.20.30.04
P20.040.050.050.20.320.320.02
①若1,2號(hào)運(yùn)動(dòng)員各射箭一次,求兩人中至少有一人命中8環(huán)的概率;
②判斷1號(hào),2號(hào)射箭運(yùn)動(dòng)員誰射箭的水平高?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案