精英家教網 > 高中數學 > 題目詳情

如圖,α∩β=l,梯形ABCD的兩底分別為AD、BC,且ABα,CDβ,求證:AB與CD的交點在l上.

答案:
解析:

證明:因為梯形是平面圖形,它的兩腰AB與CD不平行,故只能相交,假設交點為M,則M∈AB,又ABα,則M∈α,同理M∈β,則M∈(α∩β),即M∈l.因此AB與CD的交點在l上.


練習冊系列答案
相關習題

科目:高中數學 來源:訓練必修二數學蘇教版 蘇教版 題型:047

如圖,α∩β=l,梯形ABCD的兩底分別為AD、BC,且ABα,CDβ,求證:AB與CD的交點在l上.

查看答案和解析>>

科目:高中數學 來源:全優(yōu)設計選修數學-2-1蘇教版 蘇教版 題型:044

如圖α⊥β,α∩β=l,A∈α,B∈β,點A在直線l上的射影為A1,點B在l上的射影為B1,已知AB=2,AA1=1,BB1,求:

(1)直線AB分別與平面α,β所成角的大。

(2)二面角A1-AB-B1的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖在二面角α- l-β中,A、B∈α,C、D∈l,ABCD為矩形,P∈β,PA⊥α,且PA=AD,MN依次是AB、PC的中點

⑴ 求二面角α- l-β的大小

⑵ 求證明:MN⊥AB

⑶ 求異面直線PA與MN所成角的大小

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,α∩β=l,A,B∈α,C∈β,Cl,直線AB∩l=M,過A,B,C三點的平面記作γ,則γ與β的交線必通過(  )

(A)點A                          (B)點B

(C)點C但不過點M        (D)點C和點M

查看答案和解析>>

同步練習冊答案