【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE= CD=2,M是線段AE上的動點.
(Ⅰ)試確定點M的位置,使AC∥平面MDF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面MDF將幾何體ADE﹣BCF分成的兩部分的體積之比.
【答案】解:(Ⅰ)當M是線段AE的中點時,AC∥平面MDF.證明如下:
連結(jié)CE,交DF于N,連結(jié)MN,
由于M、N分別是AE、CE的中點,所以MN∥AC,
由于MN平面MDF,又AC平面MDF,
所以AC∥平面MDF.
(Ⅱ)如圖,將幾何體ADE﹣BCF補成三棱柱ADE﹣B′CF,
三棱柱ADE﹣B′CF的體積為 ,
則幾何體ADE﹣BCF的體積
VADE﹣BCF=V三棱柱ADE﹣BCF﹣VF﹣BB'C= .
三棱錐F﹣DEM的體積V三棱錐M﹣DEF= ,
故兩部分的體積之比為 (答1:4,4,4:1均可)
【解析】(Ⅰ)首先,根據(jù)所給圖形,得到當M是線段AE的中點時,AC∥平面MDF.然后,根據(jù)線面平行的判定定理進行證明即可;(Ⅱ)利用補圖法,將幾何體ADE﹣BCF補成三棱柱ADE﹣B′CF,然后,借助于柱體和椎體的體積公式進行求解即可.
【考點精析】根據(jù)題目的已知條件,利用直線與平面平行的判定和直線與平面垂直的判定的相關(guān)知識可以得到問題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是奇函數(shù), 是偶函數(shù).
(1)求和的值;
(2)說明函數(shù)的單調(diào)性;若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)設(shè),若存在,使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,如圖描述了甲、乙、丙三輛汽車在不同速度下燃油效率情況,下列敘述中正確的是( )
A.消耗1升汽油,乙車最多可行駛5千米
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C.甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D.某城市機動車最高限速80千米/小時,相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若拋物線y2=2px(p>0)上一點到焦點和拋物線對稱軸的距離分別為10和6,則拋物線方程為( )
A.y2=4x
B.y2=36x
C.y2=4x或y2=36x
D.y2=8x或y2=32x
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性,并證明你的結(jié)論;
(3)在函數(shù)圖像上是否存在兩個不同的點,使直線垂直軸,若存在,求出兩點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,則下列說法正確的( )
A.a∈(2,4),輸出的i的值為5
B.a∈(4,5),輸出的i的值為5
C.a∈(3,4),輸出的i的值為5
D.a∈(2,4),輸出的i的值為5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的方程為: 。
(1)求圓的圓心所在直線方程一般式;
(2)若直線被圓截得弦長為,試求實數(shù)的值;
(3)已知定點,且點是圓上兩動點,當可取得最大值為時,求滿足條件的實數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①如果不同直線都平行于平面,則一定不相交;
②如果不同直線都垂直于平面,則一定平行;
③如果平面互相平行,若直線,直線,則;
④如果平面互相垂直,且直線也互相垂直,若,則;
其中正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過點(0,2)的直線l與中心在原點,焦點在x軸上且離心率為 的橢圓C相交于A、B兩點,直線 過線段AB的中點,同時橢圓C上存在一點與右焦點關(guān)于直線l對稱.
(1)求直線l的方程;
(2)求橢圓C的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com