如圖,已知橢圓C:=1(a>1)的上頂點(diǎn)為A,右焦點(diǎn)為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若不過(guò)點(diǎn)A的動(dòng)直線l與橢圓C相交于P、Q兩點(diǎn),且求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)N的坐標(biāo)

答案:
解析:

  (Ⅰ)將圓的一般方程化為標(biāo)準(zhǔn)方程

  ,圓的圓心為,半徑

  由,得直線

  即,

  由直線與圓相切,得,

  (舍去). 2分

  當(dāng)時(shí),,

  故橢圓的方程為 4分

  (Ⅱ)(方法一)由,從而直線與坐標(biāo)軸不垂直,

  由可設(shè)直線的方程為,

  直線的方程為

  將代入橢圓的方程

  并整理得:, 6分

  解得,因此的坐標(biāo)為,

  即 8分

  將上式中的換成,得

  直線的方程為

  化簡(jiǎn)得直線的方程為,

  因此直線過(guò)定點(diǎn). 12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:廣東佛岡一中2008屆高三數(shù)學(xué)期初摸底測(cè)試卷(文) 題型:044

如圖,已知橢圓C:(a>b>0)的離心率為,左、右焦點(diǎn)分別為F1和F2,橢圓C與x軸的兩交點(diǎn)分別為A、B,點(diǎn)P是橢圓上一點(diǎn)(不與點(diǎn)A、B重合),且∠APB=2α,∠F1PF2=2β.

(Ⅰ)若β=45°,三角形F1PF2的面積為36,求橢圓C的方程;

(Ⅱ)當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),試證明tanβ·tan2α是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年廣州市普通高中學(xué)生學(xué)業(yè)水平測(cè)試數(shù)學(xué)(理科) 題型:044

如圖,已知橢圓C:(a>b>0)的離心率為,左、右焦點(diǎn)分別為F1和F2,橢圓C與x軸的兩交點(diǎn)分別為A、B,點(diǎn)P是橢圓上一點(diǎn)(不與點(diǎn)A、B重合),且∠APB=2a,∠F1PF2=2β.

(Ⅰ)若β=45°,三角形F1PF2的面積為36,求橢圓C的方程;

(Ⅱ)當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng),試證明tanβ·tan2a為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇五校高三下學(xué)期期初教學(xué)質(zhì)量調(diào)研數(shù)學(xué)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線AP、PB與直線ly=-2分別交于點(diǎn)MN.

(1)設(shè)直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;

(2)求線段MN長(zhǎng)的最小值;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過(guò)某定點(diǎn)?請(qǐng)證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓E=1(a>b>0)的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且過(guò)點(diǎn)C(2,1),點(diǎn)C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為D.

(1)求橢圓E的方程;

(2)點(diǎn)P在橢圓E上,直線CPDP的斜率都存在且不為0,試問(wèn)直線CPDP的斜率之積是否為定值?若是,求此定值;若不是,請(qǐng)說(shuō)明理由;

(3)平行于CD的直線l交橢圓EM、N兩點(diǎn),求△CMN面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案