已知fx)是偶函數(shù),而且在(0,+∞)上是減函數(shù),判斷fx)在(-,0)上是增函數(shù)還是減函數(shù),并加以證明.

 

答案:
解析:

解:fx)在(-∞,0)上是增函數(shù),證明如下:

x1x2<0,因為fx)為偶函數(shù)

所以f(-x1)=fx1),f(-x2)=fx2)      ①

由設可知-x1>-x2>0,

fx)在(0,+∞)上是減函數(shù)于是有f(-x1)<f(-x2)   ②

把①代入②得fx1)<fx2

由此可得fx)在(-∞,0)上是增函數(shù)

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、已知f(x)是偶函數(shù),x∈R,若將f(x)的圖象向右平移一個單位又得到一個奇函數(shù),若f(2)=-1,則f(1)+f(2)+f(3)+…+f(2006)=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),如果f(ax+1)≤f(x-2)在x∈[
1
2
,1]
上恒成立,則實數(shù)a的取值范圍是( 。
A、[-2,1]
B、[-5,0]
C、[-5,1]
D、[-2,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、已知f(x)是偶函數(shù),且在[a,b]上是減函數(shù),試判斷f(x)在[-b,-a]上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是偶函數(shù),當x≥0時,f(x)=-x2+4x,求當x<0時,f(x)=
-x2-4x
-x2-4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•合肥二模)已知f(x)是偶函數(shù),當.x∈[0,
π
2
]時,f(x)=xsinx,若a=f(cos1),b=f(cos2),c=f(cos3),則 a,b,c 的大小關系為( 。

查看答案和解析>>

同步練習冊答案