f(x)是R上奇函數(shù),且滿足f(x+4)=f(x),當(dāng)x∈(0,2)時f(x)=2x3,則f(7)=
 
考點:函數(shù)的周期性,抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)周期性和奇偶性的性質(zhì)將條件進行轉(zhuǎn)化即可.
解答: 解:∵f(x+4)=f(x),∴函數(shù)的周期是4,
即f(7)=f(3)=f(-1),
∵f(x)是R上奇函數(shù),
∴f(-1)=-f(1),
∵當(dāng)x∈(0,2)時f(x)=2x3,
∴f(7)=-f(1)=-2,
故答案為:-2
點評:本題主要考查函數(shù)值的計算,根據(jù)函數(shù)的奇偶性和周期性之間的關(guān)系將條件進行轉(zhuǎn)化是解決本題的關(guān)鍵.比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a<-
2
,則關(guān)于x的函數(shù)f(x)=(sinx+a)(cosx+a)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形PDCB中,DC∥PB,PB=3DC=3,PD=
2
,DA⊥PB,垂足為A,將△PAD沿AD折起到點P′,使得P′A⊥AB,得到四棱錐P′-ABCD,點M在棱P′B上.
(Ⅰ)證明:平面P′AD⊥平面P′CD;
(Ⅱ)平面AMC把四棱錐P′-ABCD分成兩個幾何體,當(dāng)P′D∥平面AMC時,求這兩個幾何體的體積之比
VPM-ACD
VM-ABC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了保護環(huán)境,某工廠在國家的號召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測算,處理成本y(萬元)與處理量x(噸)之間的函數(shù)關(guān)系可近似的表示為:y=x2-40x+900,
(1)當(dāng)處理量為多少噸時,每噸的平均處理成本最少?
(2)若每處理一噸廢棄物可得價值為20萬元的某種產(chǎn)品,同時獲得國家補貼10萬元.當(dāng)x∈[20,25]時,判斷該項舉措能否獲利?如果能獲利,求出最大利潤;如果不能獲利,請求出國家最少補貼多少萬元,該工廠才不會虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如下樣本數(shù)據(jù):
x34567
y42.5-1-1-2
得到的線性回歸方程為
?
y
=bx+a
,則( 。
A、a>0,b>0
B、a>0,b<0
C、a<0,b>0
D、a<0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={(x,y)|y=f(x)},若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={(x,y)|y=
1
x
};、贛={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x}; ④M={(x,y)|y=ex-2};
⑤M={(x,y)|y=(x+y)
1
2
};其中是“垂直對點集”的序號是( 。
A、①②③B、②④⑤
C、①③④D、②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項和Sn,已知對任意的n∈N*,點(n,Sn)均在函數(shù)y=2x+r的圖象上.
(Ⅰ)求r的值;
(Ⅱ)記bn=log22a1+log22a2+…+log22an,求數(shù)列{
1
bn
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

市場營銷人員對過去幾年某商品的價格及銷售數(shù)量的關(guān)系作數(shù)據(jù)分析發(fā)現(xiàn)有如下規(guī)律:該商品的價格每上漲x%(x>0),銷售量就減少kx%(其中k為正常數(shù)).目前,該商品定價a元,統(tǒng)計其銷售數(shù)量為b個.
(1)當(dāng)k=
1
2
時,該商品的價格上漲多少,就能使銷售的總金額達到最大?
(2)在適當(dāng)?shù)臐q價過程中,求使銷售總金額不斷增加時的k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(a,b)是區(qū)域
x+y-4≤0
x>0
y>0
內(nèi)的隨機點,函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)是增函數(shù)的概率為
 

查看答案和解析>>

同步練習(xí)冊答案