(1)+xn=3+2xn+1;
(2)()n-1≤xn≤()n-2.
證明:(1)∵f′(x)=3x2+2x,
∴曲線y=f(x)在(xn+1,f(xn+1))處的切線斜率kn+1=3+2xn+1.
∵過(0,0)和(xn,f(xn))兩點的直線斜率是+xn.
所以+xn=3+2xn+1.
(2)因為函數(shù)h(x)=x2+x當x>0時單調(diào)遞增.
而+xn=3+2xn+1≤4+2xn-1=(2xn-1)2+2xn+1.
∴x≤2xn+1,即≥.
因此xn=··…·≥()n-1.
又+xn≥2(+xn+1),
令yn=+xn,
則≤.
∵y1=x21+x1=2,∴yn≤()n-1·y1=()n-2.
因此xn≤+xn≤()n-2.
故()n-1≤xn≤()n-2.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學 來源:浙江省東陽中學高三10月階段性考試數(shù)學理科試題 題型:022
已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.
查看答案和解析>>
科目:高中數(shù)學 來源:上海模擬 題型:解答題
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數(shù)學試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com