科目:高中數(shù)學 來源:2013-2014學年甘肅西北師大附中高三11月月考文科數(shù)學試卷(解析版) 題型:解答題
已知是曲線C:上的一點(其中),過點作與曲線C在處的切線垂直的直線交軸于點,過作與軸垂直的直線與曲線C在第一象限交于點;再過點作與曲線C在處的切線垂直的直線交軸于點,過作與軸垂直的直線與曲線C在第一象限交于點;如此繼續(xù)下去,得一系列的點、、、、。(其中)
(1)求數(shù)列的通項公式。
(2)若,且是數(shù)列的前項和,是數(shù)列的前項
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省菏澤市高三5月高考沖刺題理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.
【解析】第一問當時,,則。
依題意得:,即 解得
第二問當時,,令得,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
(Ⅰ)當時,,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當時,,令得
當變化時,的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
又,,!在上的最大值為2.
②當時, .當時, ,最大值為0;
當時, 在上單調(diào)遞增!在最大值為。
綜上,當時,即時,在區(qū)間上的最大值為2;
當時,即時,在區(qū)間上的最大值為。
(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
若,則代入(*)式得:
即,而此方程無解,因此。此時,
代入(*)式得: 即 (**)
令 ,則
∴在上單調(diào)遞增, ∵ ∴,∴的取值范圍是。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
點在曲線上,曲線C在處的切線與軸相交于點,直線:與曲線C相交于點,().由曲線和直線,圍成的圖形面積記為,已知.
(1)證明:;
(2)求關(guān)于的表達式;
(3)若數(shù)列的前項之和為,
求證:().
查看答案和解析>>
科目:高中數(shù)學 來源:貴州省黔東南州2011-2012學年高三第一次模擬考試文科數(shù)學試題(2012黔東南一模) 題型:解答題
已知函數(shù),當時取得極值,且函數(shù)在點處的切線的斜率為.
(Ⅰ)求的解析式;
(Ⅱ)是坐標原點,點是軸上橫坐標為的點,點是曲線上但不在軸上的動點,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com