已知函數(shù)f(x)=x2(ax+b)在x=2時有極值(其中a,b∈R),其圖象在點(1,f(1))處的切線與直線3x+y=0平行,則函數(shù)f(x)的單調(diào)減區(qū)間為           (   )
A.(-∞,0)B.(0,2)C.(2,+∞) D.(-∞,+∞)
B
解:f′(x)=3ax2+2bx,因為函數(shù)在x=2時有極值,所以f′(2)=12a+4b=0即3a+b=0①;
又直線3x+y=0的斜率為-3,則切線的斜率k=f′(1)=3a+2b=-3②,
聯(lián)立①②解得a=1,b=-3,
令f′(x)=3x2-6x<0即3x(x-2)<0,
解得0<x<2.
故選B
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)
已知函數(shù)
(1)當時,若函數(shù)上為單調(diào)增函數(shù),求的取值范圍;
(2)當時,求證:函數(shù)f (x)存在唯一零點的充要條件是;
(3)設(shè),且,求證:<

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)。
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;
(3)記函數(shù),若的最小值是,求函數(shù)    的解析式。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本題滿分15分)已知為常數(shù),函數(shù))。
(Ⅰ) 若函數(shù)在區(qū)間(-2,-1)上為減函數(shù),求實數(shù)的取值范圍;
(Ⅱ).設(shè) 記函數(shù),已知函數(shù)在區(qū)間內(nèi)有兩個極值點,且,若對于滿足條件的任意實數(shù)都有為正整數(shù)),求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖是導函數(shù)的圖象,那么函數(shù)在下面哪個區(qū)間是減函數(shù)(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列關(guān)于函數(shù)f(x)=(2x-x2)ex的判斷正確的是
①f(x)>0的解集是{x|0<x<2};
②f(-)是極小值,f()是極大值;
③f(x)沒有最小值,也沒有最大值.
A.①③ B.①②C.②D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),其中,求的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

f(x)=-x2bln(x+2)在(-1,+∞)上是減函數(shù),則b的取值范圍是
A.[-1,+∞) B.(-1,+∞)C.(-∞,-1] D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)處取到極值2.
(Ⅰ)求的值;
(Ⅱ)試研究曲線的所有切線與直線垂直的條數(shù);
(Ⅲ)若對任意,均存在,使得,試求的取值范圍.

查看答案和解析>>

同步練習冊答案