已知函數(shù)f(x)=x
2(ax+b)在x=2時有極值(其中a,b∈R),其圖象在點(1,f(1))處的切線與直線3x+y=0平行,則函數(shù)f(x)的單調(diào)減區(qū)間為 ( )
A.(-∞,0) | B.(0,2) | C.(2,+∞) | D.(-∞,+∞) |
解:f′(x)=3ax2+2bx,因為函數(shù)在x=2時有極值,所以f′(2)=12a+4b=0即3a+b=0①;
又直線3x+y=0的斜率為-3,則切線的斜率k=f′(1)=3a+2b=-3②,
聯(lián)立①②解得a=1,b=-3,
令f′(x)=3x2-6x<0即3x(x-2)<0,
解得0<x<2.
故選B
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分16分)
已知函數(shù)
.
(1)當
時,若函數(shù)
在
上為單調(diào)增函數(shù),求
的取值范圍;
(2)當
且
時,求證:函數(shù)
f (
x)存在唯一零點的充要條件是
;
(3)設(shè)
,且
,求證:
<
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
。
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在
上單調(diào)遞增,求實數(shù)
的取值范圍;
(3)記函數(shù)
,若
的最小值是
,求函數(shù)
的解析式。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.(本題滿分15分)已知
為常數(shù),函數(shù)
(
)。
(Ⅰ) 若函數(shù)
在區(qū)間(-2,-1)上為減函數(shù),求實數(shù)
的取值范圍;
(Ⅱ).設(shè)
記函數(shù)
,已知函數(shù)
在區(qū)間
內(nèi)有兩個極值點
,且
,若對于滿足條件的任意實數(shù)
都有
(
為正整數(shù)),求
的最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖是導函數(shù)
的圖象,那么函數(shù)
在下面哪個區(qū)間是減函數(shù)( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
下列關(guān)于函數(shù)f(x)=(2x-x
2)e
x的判斷正確的是
①f(x)>0的解集是{x|0<x<2};
②f(-)是極小值,f()是極大值;
③f(x)沒有最小值,也沒有最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)函數(shù)
,其中
,求
的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若
f(
x)=-
x2+
bln(
x+2)在(-1,+∞)上是減函數(shù),則
b的取值范圍是
A.[-1,+∞) | B.(-1,+∞) | C.(-∞,-1] | D.(-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
在
處取到極值2.
(Ⅰ)求
的值;
(Ⅱ)試研究曲線
的所有切線與直線
垂直的條數(shù);
(Ⅲ)若對任意
,均存在
,使得
,試求
的取值范圍.
查看答案和解析>>