已知向量
m
(x,y),
n
(a,b),
m
n
均為單位向量,試證明:ax+by≤1.
考點(diǎn):平面向量數(shù)量積的性質(zhì)及其運(yùn)算律
專題:平面向量及應(yīng)用
分析:根據(jù)向量的數(shù)量積的定義以及向量的數(shù)量積的坐標(biāo)運(yùn)算結(jié)合余弦的有界性解答.
解答: 解:因?yàn)橄蛄?span id="viw9uij" class="MathJye">
m
(x,y),
n
(a,b),
m
n
均為單位向量,
所以
m
n
=ax+by=|
m
||
n
|cos<
m
,
n
>=cos<
m
,
n
>≤1;
故結(jié)論成立.
點(diǎn)評:本題考查了向量的數(shù)量積的定義以及坐標(biāo)運(yùn)算屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)Z=lg(m2-2m-3)+(m2+3m+2)i,試求m取何值時(shí)
(1)Z是實(shí)數(shù);
(2)Z是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是正數(shù),a+b=1,求(a+
1
a
)+(b+
1
b
)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,快艇和輪船分別從A地和C地同時(shí)開出,航行路線互相垂直,快艇的速度為40千米/時(shí),輪船的速度是15千米/時(shí),A、C兩地間的距離是120千米.問經(jīng)過多少時(shí)間.快艇和輪船之間的距離最。浚ň_到0.1小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)是偶函數(shù),且x≥0時(shí),f(x)=ln(x2-2x+2).
(1)求f(x)的解析式;
(2)寫出f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
3
x3+x2+mx是R上的單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是( 。
A、(1,+∞)
B、(-∞,1)
C、[1,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)A(-
3p
2
,p),且與拋物線y2=2px只有一個(gè)公共點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線a平行于平面α,則下列結(jié)論錯(cuò)誤的是( 。
A、a平行于α內(nèi)的所有直線
B、α內(nèi)有無數(shù)條直線與a平行
C、直線a上的點(diǎn)到平面α的距離相等
D、α內(nèi)存在無數(shù)條直線與a成90°角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+2n+1,若數(shù)列{bn}滿足bn=
2
anan+1
,則其前n項(xiàng)和Tn=
 

查看答案和解析>>

同步練習(xí)冊答案