求展開式1+(1+x)++…+中含的項.

答案:
解析:

解法1 各展開式中含項的系數(shù)依次是,…,,故所求項的系數(shù)為

∴含的項為

解法2 原式可視為,…,這個等比數(shù)列前18項的和,其公比為(1+x),首項為,故

原式 =

∴原展開式中含的項,就是中含的項,其系數(shù)為

∴含的項為

注意,已知二項式的次數(shù),求二項展開式中的某一項,通常運用通項公式求解.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知(
x
-
2
x2
)n(n∈N*)
的展開式中第五項系數(shù)與第三項的系數(shù)的比是10,求展開式中
(1)含x
3
2
的項;
(2)二項式系數(shù)最大的項;
(3)系數(shù)最大的項和系數(shù)最小的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•揚州三模)理科附加題:
已知(1+
12
x)n
展開式的各項依次記為a1(x),a2(x),a3(x),…an(x),an+1(x).
設F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x).
(Ⅰ)若a1(x),a2(x),a3(x)的系數(shù)依次成等差數(shù)列,求n的值;
(Ⅱ)求證:對任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若()n展開式中前三項系數(shù)成等差數(shù)列,求:

(1)展開式中含x的一次冪的項;

(2)展開式中所有x的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省揚州市高考數(shù)學三模試卷(解析版) 題型:解答題

理科附加題:
已知展開式的各項依次記為a1(x),a2(x),a3(x),…an(x),an+1(x).
設F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x).
(Ⅰ)若a1(x),a2(x),a3(x)的系數(shù)依次成等差數(shù)列,求n的值;
(Ⅱ)求證:對任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2).

查看答案和解析>>

同步練習冊答案