已知復(fù)數(shù)z滿足2iz=(-1+3i)(1-i),其中i是虛數(shù)單位,則|z|=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)方程兩邊求模,化簡(jiǎn)即可.
解答: 解:復(fù)數(shù)z滿足2iz=(-1+3i)(1-i),
∴|2iz|=|-1+3i||1-i|,
即:2|z|=
1+32
1+1
=2
5

∴|z|=
5

故答案為:
5
點(diǎn)評(píng):本題考查復(fù)數(shù)的模的求法,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假定平面內(nèi)的一條直線將該平面內(nèi)的一個(gè)區(qū)域分成面積相等的兩個(gè)區(qū)域,則稱這條直線平分這個(gè)區(qū)域.如圖,?是平面α內(nèi)的任意一個(gè)封閉區(qū)域.現(xiàn)給出如下結(jié)論:
①過(guò)平面內(nèi)的任意一點(diǎn)至少存在一條直線平分區(qū)域?;
②過(guò)平面內(nèi)的任意一點(diǎn)至多存在一條直線平分區(qū)域?;
③區(qū)域?內(nèi)的任意一點(diǎn)至少存在兩條直線平分區(qū)域?;
④平面內(nèi)存在互相垂直的兩條直線平分區(qū)域?成四份.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x-
3
y+1=0的傾斜角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={x||x|<3},B={x|x-2≥0},則A∪∁UB等于(  )
A、(-∞,3]
B、(-∞,3)
C、[2,3)
D、(-3,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α終邊經(jīng)過(guò)點(diǎn)P(12,-5),則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(a-i)2為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E為PB的中點(diǎn).
(Ⅰ)證明:CE⊥AB;
(Ⅱ)若二面角P-CD-A為45°,求直線CE與平面PAB所成角的正切值.
(Ⅲ)若PA=kAB,求平面PCD與平面PAB所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線f(x)=cosx(x>0)上所有最值點(diǎn)按橫坐標(biāo)由小到大的順序排成點(diǎn)列(an,f(an))(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=3nan,數(shù)列{bn}的前n項(xiàng)和為Tn,求sinT7的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:存在x∈R,x2+mx+1<0,q:任意x∈R,sinx+cosx>m,若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案